191 research outputs found
A Perspective of Coagulation Dysfunction in Multiple Sclerosis and in Experimental Allergic Encephalomyelitis
A key role of both coagulation and vascular thrombosis has been reported since the first descriptions of multiple sclerosis (MS). Subsequently, the observation of a close concordance between perivascular fibrin(ogen) deposition and the occurrence of clinical signs in experimental allergic encephalomyelitis (EAE), an animal model of MS, led to numerous investigations focused on the role of thrombin and fibrin(ogen). Indeed, the activation of microglia, resident innate immune cells, occurs early after fibrinogen leakage in the pre-demyelinating lesion stage of EAE and MS. Thrombin has both neuroprotective and pro-apoptotic effects according to its concentration. After exposure to high concentrations of thrombin, astrocytes become reactive and lose their neuroprotective and supportive functions, microglia proliferate, and produce reactive oxygen species, IL-1β, and TNFα. Heparin inhibits the thrombin generation and suppresses EAE. Platelets play an important role too. Indeed, in the acute phase of the disease, they begin the inflammatory response in the central nervous system by producing of IL-1alpha and triggering and amplifying the immune response. Their depletion, on the contrary, ameliorates the course of EAE. Finally, it has been proven that the use of several anticoagulant agents can successfully improve EAE. Altogether, these studies highlight the role of the coagulation pathway in the pathophysiology of MS and suggest possible therapeutic targets that may complement existing treatments
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
Abstract
Background
Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings.
Methods
We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding.
Results
Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4.
Conclusions
These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci.http://deepblue.lib.umich.edu/bitstream/2027.42/109537/1/12920_2013_Article_485.pd
Targeting cancer metabolism: a therapeutic window opens
Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.
Identification of Novel Inhibitors of Dietary Lipid Absorption Using Zebrafish
Pharmacological inhibition of dietary lipid absorption induces favorable changes in serum lipoprotein levels in patients that are at risk for cardiovascular disease and is considered an adjuvant or alternative treatment with HMG-CoA reductase inhibitors (statins). Here we demonstrate the feasibility of identifying novel inhibitors of intestinal lipid absorption using the zebrafish system. A pilot screen of an unbiased chemical library identified novel compounds that inhibited processing of fluorescent lipid analogues in live zebrafish larvae. Secondary assays identified those compounds suitable for testing in mammals and provided insight into mechanism of action, which for several compounds could be distinguished from ezetimibe, a drug used to inhibit cholesterol absorption in humans that broadly inhibited lipid absorption in zebrafish larvae. These findings support the utility of zebrafish screening assays to identify novel compounds that target complex physiological processes
Investigation of the Performance of the New Orleans Flood Protection System in Hurricane Katrina on August 29, 2005: Volume 1
This report presents the results of an investigation of the performance of the New Orleans regional flood protection system during and after Hurricane Katrina, which struck the New Orleans region on August 29, 2005. This event resulted in the single most costly catastrophic failure of an engineered system in history. Current damage estimates at the time of this writing are on the order of 200 billion in the greater New Orleans area, and the official death count in New Orleans and southern Louisiana at the time of this writing stands at 1,293, with an additional 306 deaths in nearby southern Mississippi. An additional approximately 300 people are currently still listed as “missing”; it is expected that some of these missing were temporarily lost in the shuffle of the regional evacuation, but some of these are expected to have been carried out into the swamps and the Gulf of Mexico by the storm’s floodwaters, and some are expected to be recovered in the ongoing sifting through the debris of wrecked homes and businesses, so the current overall regional death count of 1,599 is expected to continue to rise a bit further. More than 450,000 people were initially displaced by this catastrophe, and at the time of this writing more than 200,000 residents of the greater New Orleans metropolitan area continue to be displaced from their homes by the floodwater damages from this storm event.
This investigation has targeted three main questions as follow: (1) What happened?, (2) Why?, and (3) What types of changes are necessary to prevent recurrence of a disaster of this scale again in the future?
To address these questions, this investigation has involved: (1) an initial field reconnaissance, forensic study and data gathering effort performed quickly after the arrival of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005), (2) a review of the history of the regional flood protection system and its development, (3) a review of the challenging regional geology, (4) detailed studies of the events during Hurricanes Katrina and Rita, as well as the causes and mechanisms of the principal failures, (4) studies of the organizational and institutional issues affecting the performance of the flood protection system, (5) observations regarding the emergency repair and ongoing interim levee reconstruction efforts, and (6) development of findings and preliminary recommendations regarding changes that appear warranted in order to prevent recurrence of this type of catastrophe in the future.
In the end, it is concluded that many things went wrong with the New Orleans flood protection system during Hurricane Katrina, and that the resulting catastrophe had it roots in three main causes: (1) a major natural disaster (the Hurricane itself), (2) the poor performance of the flood protection system, due to localized engineering failures, questionable judgments, errors, etc. involved in the detailed design, construction, operation and maintenance of the system, and (3) more global “organizational” and institutional problems associated with the governmental and local organizations responsible for the design, construction, operation, maintenance and funding of the overall flood protection system
Biology-driven cancer drug development: back to the future
Most of the significant recent advances in cancer treatment have been based on the great strides that have been made in our understanding of the underlying biology of the disease. Nevertheless, the exploitation of biological insight in the oncology clinic has been haphazard and we believe that this needs to be enhanced and optimized if patients are to receive maximum benefit. Here, we discuss how research has driven cancer drug development in the past and describe how recent advances in biology, technology, our conceptual understanding of cell networks and removal of some roadblocks may facilitate therapeutic advances in the (hopefully) near future
Immigrant fertility in West Germany: is there a socialization effect in transitions to second and third births?
In this paper on immigrant fertility in West Germany, we estimate the transition rates to second and third births, using intensity-regression models. The data come from the German Socio-Economic Panel Study. We distinguish women of the first and the second immigrant generations originating from Turkey, the former Yugoslavia, Greece, Italy, and Spain, and compare their fertility levels to those of West German women. In the theoretical framework, we discuss competing hypotheses on migrant fertility. The findings support mainly the socialization hypothesis: the transition rates of first-generation immigrants vary by country of origin, and the fertility patterns of migrant descendants resemble more closely those of West Germans than those of the first immigrant generation. In addition, the analyses show that fertility differentials between immigrants and women of the indigenous population can largely, though not in full, be explained by compositional differences.Dans cet article relatif à la fécondité des immigrées en Allemagne, le passage du premier au deuxieme enfant et dans celui du deuxieme au troisieme enfant est estimé à partir de modèles de régression à risques instantanés. Les données utilisées proviennent de l’étude de Panel socio-économique allemand. On distingue les femmes immigrées de première ou de seconde génération originaires de Turquie, d’ex-Yougoslavie, de Grèce, d’Italie et d’Espagne, et leurs niveaux de fécondité sont comparés à ceux des femmes ouest-allemandes d’origine. Des hypothèses concurrentes sur la fécondité des immigrés sont discutées dans le cadre théorique. Les résultats vérifient principalement l’hypothèse de la socialisation : le passage au deuxieme et au troisieme enfant de la première génération d’immigrés varie selon le pays d’origine, et le profil de fécondité par âge des descendantes d’immigrées se rapproche plus de celui des femmes ouest-allemandes que de celui des immigrées de première génération. De plus, les analyses montrent que les différences de fécondité entre les immigrées et les femmes ouest-allemandes peuvent être en grande partie, mais pas totalement, expliquées par des différences de structure
Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites
Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization—a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen
Treatment of complicated skin and soft-tissue infections caused by resistant bacteria: value of linezolid, tigecycline, daptomycin and vancomycin
Antibiotic-resistant organisms causing both hospital-and community-acquired complicated skin and soft-tissue infections (cSSTI) are increasingly reported. A substantial medical and economical burden associated with MRSA colonisation or infection has been documented. The number of currently available appropriate antimicrobial agents is limited. Good quality randomised, controlled clinical trial data on antibiotic efficacy and safety is available for cSSTI caused by MRSA. Linezolid, tigecycline, daptomycin and vancomycin showed efficacy and safety in MRSA-caused cSSTI. None of these drugs showed significant superiority in terms of clinical cure and eradication rates. To date, linezolid offers by far the greatest number of patients included in controlled trials with a strong tendency of superiority over vancomycin in terms of eradication and clinical success
- …
