163 research outputs found
Metallothioneins, Saccharomyces cerevisiae, and Heavy Metals: A Biotechnology Triad?
Metal ions are the least sophisticated chemical species that interact or bind to biomolecules. The yeast Saccharomyces cerevisiae represents a versatile model organisms used in both basic and applicative research, and one of the main contributors to the understanding of the molecular mechanisms involved in the transport, accumulation, and homeostasis of heavy metals. With a negatively charged wall, the yeast cells are very good biosorbents for heavy metals. In addition to biosorption, the metabolically active cells take up heavy metals via the normal membrane transport systems. Once in the cell, the toxicity of the heavy metals is controlled by various mechanisms, including sequestration by metal-binding proteins, such as the metallothioneins. Metallothioneins are cysteine-rich proteins involved in the buffering of excess heavy metals, both essential (Cu and Zn) and nonessential (Cd, Ag, and Hg). S. cerevisiae has two innate metallothioneins, Cup1 and Crs5, intensively investigated. Additionally, S. cerevisiae served as a host for the heterologous expression of a variety of metallothioneins from different species. This review focuses on the technological implications of expressing metallothioneins in yeast and on the possibility to use these transgenic cells in heavy metal-related biotechnologies: bioremediation, recovery of rare metals, or obtaining clonable tags for protein imaging
Calcium and Cell Response to Heavy Metals: Can Yeast Provide an Answer?
Despite constant efforts to maintain a clean environment, heavy metal pollution continues to raise challenges to the industrialized world. Exposure to heavy metals is detrimental to living organisms, and it is of utmost importance that cells find rapid and efficient ways to respond to and eventually adapt to surplus metals for survival under severe stress. This chapter focuses on the attempts done so far to elucidate the calcium-mediated response to heavy metal stress using the model organism Saccharomyces cerevisiae. The possibilities to record the transient elevations of calcium within yeast cells concomitantly with the heavy metal exposure are presented, and the limitations imposed by interference between calcium and heavy metals are discussed
Neurosurgical cadaveric and in vivo large animal training models for cranial and spinal approaches and techniques — a systematic review of the current literature
Introduction. Due to its high complexity, neurosurgery consists of a demanding learning curve that requires intense training and a deep knowledge of neuroanatomy. Microsurgical skill development can be achieved through various models of simulation, but as human cadaveric models are not always accessible, cadaveric animal models can provide a reliable environment in which to enhance the acquisition of surgical dexterity. The aim of this review was to analyse the current role of animal brains in laboratory training and to assess their correspondence to the procedures performed in humans.
Material and methods. A Pubmed literature search was performed to identify all the articles concerning training cranial and spinal techniques on large animal heads. The search terms were ‘training model’, and ‘neurosurgery’ in association with ‘animal’, ‘sheep’, ‘cow’, and ‘swine’. The exclusion criteria were articles that were on human brains, experimental fundamental research, or on virtual simulators.
Results. The search retrieved 119 articles, of which 25 were relevant to the purpose of this review. Owing to their similar neuroanatomy, bovine, porcine and ovine models prove to be reliable structures in simulating neurosurgical procedures. On bovine skulls, an interhemispheric transcalosal and retrosigmoid approach along with different approaches to the Circle of Willis can be recreated. Ovine model procedures have varied from lumbar discectomies on sheep spines to craniosynostosis surgery, whereas in ex vivo swine models, cadaveric dissections of lateral sulcus, median and posterior fossa have been achieved.
Conclusions. Laboratory training models enhance surgical advancements by familiarising trainee surgeons with certain neuroanatomical structures and promoting greater surgical dexterity. The accessibility of animal brains allows trainee surgeons to exercise techniques outside the operating theatre, thus optimising outcomes in human surgical procedures
Chemiluminescence Determination of the Total Antioxidant Capacity of Rosemary Extract
Total antioxidant capacity (TAC
Antigen Presenting Cells Link theFemale Genital Tract Microbiometo Mucosal Inflammation, WithHormonal Contraception as anAdditional Modulator ofInflammatory Signatures
Antigen Presenting Cells Link the Female Genital Tract Microbiome to Mucosal Inflammation, With Hormonal Contraception as an Additional Modulator of Inflammatory Signatures
The microbiome of the female genital tract (FGT) is closely linked to reproductive health outcomes. Diverse, anaerobe-dominated communities with low Lactobacillus abundance are associated with a number of adverse reproductive outcomes, such as preterm birth, cervical dysplasia, and sexually transmitted infections (STIs), including HIV. Vaginal dysbiosis is associated with local mucosal inflammation, which likely serves as a biological mediator of poor reproductive outcomes. Yet the precise mechanisms of this FGT inflammation remain unclear. Studies in humans have been complicated by confounding demographic, behavioral, and clinical variables. Specifically, hormonal contraception is associated both with changes in the vaginal microbiome and with mucosal inflammation. In this study, we examined the transcriptional landscape of cervical cell populations in a cohort of South African women with differing vaginal microbial community types. We also investigate effects of reproductive hormones on the transcriptional profiles of cervical cells, focusing on the contraceptive depot medroxyprogesterone acetate (DMPA), the most common form of contraception in sub-Saharan Africa. We found that antigen presenting cells (APCs) are key mediators of microbiome associated FGT inflammation. We also found that DMPA is associated with significant transcriptional changes across multiple cell lineages, with some shared and some distinct pathways compared to the inflammatory signature seen with dysbiosis. These results highlight the importance of an integrated, systems-level approach to understanding host-microbe interactions, with an appreciation for important variables, such as reproductive hormones, in the complex system of the FGT mucosa
Author response: Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme
Recommended from our members
Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa
Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b ‘C’) and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b ‘Y’). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 µM Cd) and liquid medium (0; 10; 20 µM Cd). Yeast growth was assessed visually and by spectrometry OD600. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b ‘Y’ was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 µM, but differed under 20 µM Cd, the order of tolerance was: WT < PtMT2b ‘C’ < PtMT2b ‘Y’, the latter presenting 37% higher growth than the strain with PtMT2b ‘C’. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b ‘Y’ had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids
Analysis of international organisations contribution to devoloping the National Programme of Familial Planification 1990-2008
- …
