67 research outputs found
Increased Fluorodeoxyglucose Uptake Following Endovascular Abdominal Aortic Aneurysm Repair: A Predictor of Endoleak?
The main criterion for abdominal aortic aneurysm (AAA) repair is an AAA diameter ≥5.5 cm. However, some AAAs rupture when they are smaller. Size alone may therefore not be a sufficient criterion to determine rupture risk. Fluorodeoxyglucose (FDG) uptake is increased in the presence of inflammation and it was suggested that this may be a better predictor of rupture risk than AAA size. Furthermore, increased FDG uptake following endovascular AAA repair may be an indirect predictor of continuous AAA sac enlargement due to the presence of an endoleak (even if this is not detected by imaging modalities) and/or increased AAA rupture risk. The role of FDG uptake needs to be explored further in the management of AAAs
Unilateral congenital elongation of the cervical part of the internal carotid artery with kinking and looping: two case reports and review of the literature
Unilateral and bilateral variation in the course and elongation of the cervical (extracranial) part of the internal carotid artery (ICA) leading to its tortuosity, kinking and coiling or looping is not a rare condition, which could be caused by both embryological and acquired factors. Patients with such variations may be asymptomatic in some cases; in others, they can develop cerebrovascular symptoms due to carotid stenosis affecting cerebral circulation. The risk of transient ischemic attacks in patients with carotid stenosis is high and its surgical correction is indicated for the prevention of ischemic stroke. Detection of developmental variations of the ICA and evaluation of its stenotic areas is very important for surgical interventions and involves specific diagnostic imaging techniques for vascular lesions including contrast arteriography, duplex ultrasonography and magnetic resonance angiography. Examination of obtained images in cases of unusual and complicated variations of vascular pattern of the ICA may lead to confusion in interpretation of data. Awareness about details and topographic anatomy of variations of the ICA may serve as a useful guide for both radiologists and vascular surgeons. It may help to prevent diagnostic errors, influence surgical tactics and interventional procedures and avoid complications during the head and neck surgery. Our present study was conducted with a purpose of updating data about developmental variations of the ICA. Dissections of the main neurovascular bundle of the head and neck were performed on a total 14 human adult cadavers (10 – Africans: 7 males & 3 females and 4 – East Indians: all males). Two cases of unilateral congenital elongation of the cervical part of the ICA with kinking and looping and carotid stenoses were found only in African males. Here we present their detailed case reports with review of the literature
Secondary Endoleak Management Following TEVAR and EVAR.
Endovascular abdominal and thoracic aortic aneurysm repair and are widely used to treat increasingly complex aneurysms. Secondary endoleaks, defined as those detected more than 30 days after the procedure and after previous negative imaging, remain a challenge for aortic specialists, conferring a need for long-term surveillance and reintervention. Endoleaks are classified on the basis of their anatomic site and aetiology. Type 1 and type 2 endoleaks (EL1 and EL2) are the most common endoleaks necessitating intervention. The management of these requires an understanding of their mechanics, and the risk of sac enlargement and rupture due to increased sac pressure. Endovascular techniques are the main treatment approach to manage secondary endoleaks. However, surgery should be considered where endovascular treatments fail to arrest aneurysm growth. This chapter reviews the aetiology, significance, management strategy and techniques for different endoleak types
Device Evolution and New Concepts to Preserve Renal Artery Patency in Challenging Infrarenal Aortic Necks
n/
A comprehensive review on learning curve associated problems in endoscopic vein harvesting and the requirement for a standardised training programme
Accelerated intimal hyperplasia in aortocoronary internal mammary vein grafts in minipigs
Suppression of SIRT1 in Diabetic Conditions Induces Osteogenic Differentiation of Human Vascular Smooth Muscle Cells via RUNX2 Signalling
Vascular calcification is associated with significant morbidity and mortality within diabetes, involving activation of osteogenic regulators and transcription factors. Recent evidence demonstrates the beneficial role of Sirtuin 1 (SIRT1), an NAD+ dependant deacetylase, in improved insulin sensitivity and glucose homeostasis, linking hyperglycaemia and SIRT1 downregulation. This study aimed to determine the role of SIRT1 in vascular smooth muscle cell (vSMC) calcification within the diabetic environment. An 80% reduction in SIRT1 levels was observed in patients with diabetes, both in serum and the arterial smooth muscle layer, whilst both RUNX2 and Osteocalcin levels were elevated. Human vSMCs exposed to hyperglycaemic conditions in vitro demonstrated enhanced calcification, which was positively associated with the induction of cellular senescence, verified by senescence-associated β-galactosidase activity and cell cycle markers p16 and p21. Activation of SIRT1 by SRT1720 reduced Alizarin red staining by a third, via inhibition of the RUNX2 pathway and prevention of senescence. Conversely, inhibition of SIRT1 via Sirtinol and siRNA increased RUNX2 by over 50%. These findings demonstrate the key role that SIRT1 plays in preventing calcification in a diabetic environment, through the inhibition of RUNX2 and senescence pathways, suggesting a downregulation of SIRT1 may be responsible for perpetuating vascular calcification in diabetes
Endovascular repair of an aortoiliac aneurysm with bilateral bifurcated branched iliac stent-grafts
- …
