86 research outputs found

    Superconducting routing platform for large-scale integration of quantum technologies

    Full text link
    To reach large-scale quantum computing, three-dimensional integration of scalable qubit arrays and their control electronics in multi-chip assemblies is promising. Within these assemblies, the use of superconducting interconnections, as routing layers, offers interesting perspective in terms of (1) thermal management to protect the qubits from control electronics self-heating, (2) passive device performance with significant increase of quality factors and (3) density rise of low and high frequency signals thanks to minimal dispersion. We report on the fabrication, using 200 mm silicon wafer technologies, of a multi-layer routing platform designed for the hybridization of spin qubit and control electronics chips. A routing level couples the qubits and the control circuits through one layer of Al0.995Cu0.005 and superconducting layers of TiN, Nb or NbN, connected between them by W-based vias. Wafer-level parametric tests at 300 K validate the yield of these technologies and low temperature electrical measurements in cryostat are used to extract the superconducting properties of the routing layers. Preliminary low temperature radio-frequency characterizations of superconducting passive elements, embedded in these routing levels, are presented

    Network-Based Prediction and Analysis of HIV Dependency Factors

    Get PDF
    HIV Dependency Factors (HDFs) are a class of human proteins that are essential for HIV replication, but are not lethal to the host cell when silenced. Three previous genome-wide RNAi experiments identified HDF sets with little overlap. We combine data from these three studies with a human protein interaction network to predict new HDFs, using an intuitive algorithm called SinkSource and four other algorithms published in the literature. Our algorithm achieves high precision and recall upon cross validation, as do the other methods. A number of HDFs that we predict are known to interact with HIV proteins. They belong to multiple protein complexes and biological processes that are known to be manipulated by HIV. We also demonstrate that many predicted HDF genes show significantly different programs of expression in early response to SIV infection in two non-human primate species that differ in AIDS progression. Our results suggest that many HDFs are yet to be discovered and that they have potential value as prognostic markers to determine pathological outcome and the likelihood of AIDS development. More generally, if multiple genome-wide gene-level studies have been performed at independent labs to study the same biological system or phenomenon, our methodology is applicable to interpret these studies simultaneously in the context of molecular interaction networks and to ask if they reinforce or contradict each other

    The Kaposi's sarcoma-associated herpesvirus ORF57 protein: a pleurotropic regulator of gene expression

    Get PDF
    Herpesviridae comprises over 120 viruses infecting a wide range of vertebrates including humans and livestock. Herpesvirus infections typically produce dermal lesions or immune cell destruction, but can also lead to oncogenesis, especially with KSHV (Kaposi's sarcoma-associated herpesvirus). All herpesviruses are nuclear replicating viruses that subvert cellular processes such as nucleocytoplasmic transport for their advantage. For virus replication to take over the cell and produce lytic infection requires that virus gene expression outpace that of the host cell. KSHV ORF57 (open reading frame 57) appears to play a major role in this by (i) serving as a nuclear export receptor to carry intronless viral mRNAs out of the nucleus and (ii) inhibiting expression of intron-containing host mRNAs. As most of the virally encoded mRNAs are intronless compared with host cell mRNAs, these two mechanisms are critical to overcoming host gene expression

    Rang des matrices Hermitiennes semi-définies positives indéfiniment divisibles

    Get PDF
    AbstractIn this paper we study n × n Hermitian semidefinite positive matrices which are infinitely divisible in a sense that we define in Sec. 1. We establish (Theorem 2.2) a stability property for the rank of the “Hadamard power matrices” of such a matrix

    A physiologically based model for denitrogenation kinetics

    No full text
    Under normal conditions we continuously breathe 78% nitrogen (N2) such that the body tissues and fluids are saturated with dissolved N2. For normobaric medical gas administration at high concentrations, the N2 concentration must be less than that in the ambient atmosphere; therefore, nitrogen will begin to be released by the body tissues. There is a need to estimate the time needed for denitrogenation in the planning of surgical procedures. In this paper we will describe the application of a physiologically based pharmacokinetic model to denitrogenation kinetics. The results are compared to the data resulting from experiments in the literature that measured the end tidal N2 concentration while breathing 100% oxygen in the form of moderately rapid and slow compartment time constants. It is shown that the model is in general agreement with published experimental data. Correlations for denitrogenation as a function of subject weight are provided
    corecore