232 research outputs found
Dividing Attention Between Tasks: Testing Whether Explicit Payoff Functions Elicit Optimal Dual-Task Performance
We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions
Inference and preference in intertemporal choice
When choosing between immediate and future rewards, how do people deal with uncertainty about the value of the future outcome or the delay until its occurrence? Skylark et al. (2020) suggested that people employ a delay-reward heuristic: the inferred value of an ambiguous future reward is a function of the stated delay, and vice-versa. The present paper investigates the role of this heuristic in choice behaviour. In Studies 1a–2b, participants inferred the value of an ambiguous future reward or delay before the true value was revealed and a choice made. Preference for the future option was predicted by the discrepancy between the estimated and true values: the more pleasantly surprising the delayed option, the greater the willingness to choose it. Studies 3a–3c examined the association between inference and preference when the ambiguous values remained unknown. As predicted by the use of a delay-reward heuristic, inferred delays and rewards were positively related to stated rewards and delays, respectively. More importantly, choices were associated with inferred rewards and, in some circumstances, delays. Critically, estimates and choices were both order-dependent: when estimates preceded choices, estimates were more optimistic (people inferred smaller delays and larger rewards) and were subsequently more likely to choose the delayed option than when choices were made before estimates. These order effects argue against a simple model in which people deal with ambiguity by first estimating the unknown value and then using their estimate as the basis for decision. Rather, it seems that inferences are partly constructed from choices, and the role of inference in choice depends on whether an explicit estimate is made prior to choosing. Finally, we also find that inferences about ambiguous delays depend on whether the estimate has to be made in "days" or in a self-selected temporal unit, and replicate previous findings that older participants make more pessimistic inferences than younger ones. We discuss the implications and possible mechanisms for these findings
The effect of autism on information sampling during decision-making: An eye-tracking study
AbstractRecent research has highlighted a tendency for more rational and deliberative decision-making in individuals with autism. We tested this hypothesis by using eye-tracking to investigate the information processing strategies that underpin multi-attribute choice in a sample of adults diagnosed with autism spectrum condition. We found that, as the number of attributes defining each option increased, autistic decision-makers were speedier, examined less of the available information, and spent a greater proportion of their time examining the option they eventually chose. Rather than indicating a more deliberative style, our results are consistent with a tendency for individuals with autism to narrow down the decision-space more quickly than does the neurotypical population.This research was funded by a Wellcome Trust (grant RG76641) and Isaac Newton Trust grant (Grant RG70368). GF was also supported by a Wellcome ISSF award (204796/Z/16/Z). PS was supported by the Autism Research Trust and the Wellcome Trust. SBC received funding from the Wellcome Trust 214322/Z/18/Z. In addition, SBC received funding from Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 777394. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. SBC also received funding from the Autism Research Trust, SFARI, the Templeton World Charitable Fund, SFARI, and the NIHR Cambridge Biomedical Research Centre. The research was supported by the (U.K.) National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care East of England at Cambridgeshire and Peterborough NHS Foundation Trust
Homochirality and the need of energy
The mechanisms for explaining how a stable asymmetric chemical system can be
formed from a symmetric chemical system, in the absence of any asymmetric
influence other than statistical fluctuations, have been developed during the
last decades, focusing on the non-linear kinetic aspects. Besides the absolute
necessity of self-amplification processes, the importance of energetic aspects
is often underestimated. Going down to the most fundamental aspects, the
distinction between a single object -- that can be intrinsically asymmetric --
and a collection of objects -- whose racemic state is the more stable one --
must be emphasized. A system of strongly interacting objects can be described
as one single object retaining its individuality and a single asymmetry; weakly
or non-interacting objects keep their own individuality, and are prone to
racemize towards the equilibrium state. In the presence of energy fluxes,
systems can be maintained in an asymmetric non-equilibrium steady-state. Such
dynamical systems can retain their asymmetry for times longer than their
racemization time.Comment: 8 pages, 7 figures, submitted to Origins of Life and Evolution of
Biosphere
Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic
Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19′89N, 10°09′06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20′45N, 9°57′02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m−3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m−3 at NOK) and T. longicornis (to 1,959 m−3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Developmental learning impairments in a rodent model of nodular heterotopia
Developmental malformations of neocortex—including microgyria, ectopias, and periventricular nodular heterotopia (PNH)—have been associated with language learning impairments in humans. Studies also show that developmental language impairments are frequently associated with deficits in processing rapid acoustic stimuli, and rodent models have linked cortical developmental disruption (microgyria, ectopia) with rapid auditory processing deficits. We sought to extend this neurodevelopmental model to evaluate the effects of embryonic (E) day 15 exposure to the anti-mitotic teratogen methylazoxymethanol acetate (MAM) on auditory processing and maze learning in rats. Extensive cortical anomalies were confirmed in MAM-treated rats post mortem. These included evidence of laminar disruption, PNH, and hippocampal dysplasia. Juvenile auditory testing (P21–42) revealed comparable silent gap detection performance for MAM-treated and control subjects, indicating normal hearing and basic auditory temporal processing in MAM subjects. Juvenile testing on a more complex two-tone oddball task, however, revealed a significant impairment in MAM-treated as compared to control subjects. Post hoc analysis also revealed a significant effect of PNH severity for MAM subjects, with more severe disruption associated with greater processing impairments. In adulthood (P60–100), only MAM subjects with the most severe PNH condition showed deficits in oddball two-tone processing as compared to controls. However, when presented with a more complex and novel FM sweep detection task, all MAM subjects showed significant processing deficits as compared to controls. Moreover, post hoc analysis revealed a significant effect of PNH severity on FM sweep processing. Water Maze testing results also showed a significant impairment for spatial but not non-spatial learning in MAM rats as compared to controls. Results lend further support to the notions that: (1) generalized cortical developmental disruption (stemming from injury, genetic or teratogenic insults) leads to auditory processing deficits, which in turn have been suggested to play a causal role in language impairment; (2) severity of cortical disruption is related to the severity of processing impairments; (3) juvenile auditory processing deficits appear to ameliorate with maturation, but can still be elicited in adulthood using increasingly complex acoustic stimuli; and (4) malformations induced with MAM are also associated with generalized spatial learning deficits. These cumulative findings contribute to our understanding of the behavioral consequences of cortical developmental pathology, which may in turn elucidate mechanisms contributing to developmental language learning impairment in humans
High-utilizing Crohn's disease patients under psychosomatic therapy*
<p>Abstract</p> <p>Objective</p> <p>Few studies have been published on health care utilization in Crohn's disease and the influence of psychological treatment on high utilizers.</p> <p>Methods</p> <p>The present sub study of a prospective multi center investigation conducted in 87 of 488 consecutive Crohn's disease (CD) patients was designed to investigate the influence of the course of Crohn's disease on health care utilization (hospital days (HD) and sick leave days (SLD) collected by German insurance companies) and to examine the conditions of high-utilizing patients. Predictors of health care utilization should be selected. Based on a standardized somatic treatment, high health care utilizing patients of the psychotherapy and control groups should be compared before and after a one-year treatment.</p> <p>Results</p> <p>Multivariate regression analysis identified disease activity at randomization as an important predictor of the clinical course (r<sup>2 </sup>= 0.28, p < 0.01). Health care utilization correlated with duration of disease (p < 0.04), but the model was not significant (r<sup>2 </sup>= 0.15, p = 0.09). The patients' level of anxiety, depression and lack of control at randomization predicted their health-related quality of life at the end of the study (r<sup>2 </sup>= 0.51, p < 0.00001). Interestingly, steroid intake and depression (t1) predicted the combined outcome measure (clinical course, HRQL, health care utilization) of Crohn's disease at the end of the study (r<sup>2 </sup>= 0.22, p < 0.001).</p> <p>Among high utilizers, a significantly greater drop in HD (p < 0.03) and in mean in SLD were found in the treatment compared to the control group.</p> <p>Conclusion</p> <p>The course of Crohn's disease is influenced by psychological as well as somatic factors; especially depression seems important here. A significant drop of health care utilization demonstrates the benefit of psychological treatment in the subgroup of high-utilizing CD patients. Further studies are needed to replicate the findings of the clinical outcome in this CD subgroup.</p
Advances in childhood immunisation in South Africa: where to now? Programme managers’ views and evidence from systematic reviews
Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites
<p>Abstract</p> <p>Background</p> <p>The transcription factors peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated during differentiation of murine 3T3-L1 adipocytes.</p> <p>Results</p> <p>Here we have mapped all binding sites of C/EBPα and PPARγ in human SGBS adipocytes and compared these with the genome-wide profiles from mouse adipocytes to systematically investigate what biological features correlate with retention of sites in orthologous regions between mouse and human. Despite a limited interspecies retention of binding sites, several biological features make sites more likely to be retained. First, co-binding of PPARγ and C/EBPα in mouse is the most powerful predictor of retention of the corresponding binding sites in human. Second, vicinity to genes highly upregulated during adipogenesis significantly increases retention. Third, the presence of C/EBPα consensus sites correlate with retention of both factors, indicating that C/EBPα facilitates recruitment of PPARγ. Fourth, retention correlates with overall sequence conservation within the binding regions independent of C/EBPα and PPARγ sequence patterns, indicating that other transcription factors work cooperatively with these two key transcription factors.</p> <p>Conclusions</p> <p>This study provides a comprehensive and systematic analysis of what biological features impact on retention of binding sites between human and mouse. Specifically, we show that the binding of C/EBPα and PPARγ in adipocytes have evolved in a highly interdependent manner, indicating a significant cooperativity between these two transcription factors.</p
- …
