15 research outputs found

    A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework

    No full text
    Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles. The model makes several testable predictions and seems to have the potential to be consistent with observational evidence from distant supernovae, the cosmic microwave background, and galaxy clusters. These findings may imply that negative masses are a real and physical aspect of our Universe, or alternatively may imply the existence of a superseding theory that in some limit can be modelled by effective negative masses. Both cases lead to the surprising conclusion that the compelling puzzle of the dark Universe may have been due to a simple sign erro

    Observed Faraday effects in damped Ly α absorbers and Lyman limit systems: The magnetized environment of galactic building blocks at redshift = 2

    No full text
    Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is nonturbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher |RM| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of 5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies

    Observed Faraday effects in damped Ly α absorbers and Lyman limit systems: The magnetized environment of galactic building blocks at redshift = 2

    Get PDF
    Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is nonturbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher |RM| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of 5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies

    Magnetic field disorder and faraday effects on the polarization of extragalactic radio sources

    No full text
    We present a polarization catalog of 533 extragalactic radio sources that have a 2.3 GHz total intensity above 420 mJy from the S-band Polarization All Sky Survey, S-PASS, with corresponding 1.4 GHz polarization information from the NRAO VLA Sky Survey, NVSS. We studied the selection effects and found that fractional polarization, π, of radio objects at both wavelengths depends on the spectral index, the source magnetic field disorder, the source size, and depolarization. The relationship between depolarization, spectrum, and size shows that depolarization occurs primarily in the source vicinity. The median π 2,3 of resolved objects in NVSS is approximately two times larger than that of unresolved sources. Sources with little depolarization are ∼2 times more polarized than both highly depolarized and re-polarized sources. This indicates that intrinsic magnetic field disorder is the dominant mechanism responsible for the observed low fractional polarization of radio sources at high frequencies. We predict that number counts from polarization surveys will be similar at 1.4 GHz and at 2.3 GHz, for fixed sensitivity, although ∼10% of all sources may currently be missing because of strong depolarization. Objects with π 1.4 ≈ π 2.3 ≥ 4% typically have simple Faraday structures, so they are most useful for background samples. Almost half of flat-spectrum (α ≥ -0.5) and ∼25% of steep-spectrum objects are re-polarized. Steep-spectrum, depolarized sources show a weak negative correlation of depolarization with redshift in the range 0 < z < 2.3. Previous non-detections of redshift evolution are likely due the inclusion of re-polarized sources as well

    Building the world's largest radio telescope: the Square Kilometre Array science data processor

    No full text
    The Square Kilometre Array (SKA) will be the largest radio telescope constructed to date and the largest Big Data project in the known Universe. The first phase of the project will generate 160 terabytes every second. This amounts to 5 zettabytes (5 million petabytes) of data that will be generated by the facility each year - a data rate equivalent to 5 times the estimated global internet traffic in 2015. These data need to be reduced and then continuously ingested by the SKA Science Data Processor (SDP). Within the SDP Consortium, we are contributing to various roles in the development of the telescope including building a lightweight end-to-end prototype of the major components of the SDP system - a project we call the SDP Integration Prototype (SIP). The aim is to build a mini, fully-operational SDP, for which we have been developing realistic SKA-like science pipelines that can handle these unprecedented data volumes

    Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog

    No full text
    The polarization properties of radio sources at very low frequencies (<200 MHz) have not been widely measured, but the new generation of low-frequency radio telescopes, including the Low Frequency Array (LOFAR: a Square Kilometre Array Low pathfinder), now gives us the opportunity to investigate these properties. In this paper, we report on the preliminary development of a data reduction pipeline to carry out polarization processing and Faraday tomography for data from the LOFAR Two-meter Sky Survey (LOTSS) and present the results of this pipeline from the LOTSS preliminary data release region (10h45m–15h30m right ascension, 45°–57° declination, 570 square degrees). We have produced a catalog of 92 polarized radio sources at 150 MHz at 4:03 resolution and 1 mJy rms sensitivity, which is the largest catalog of polarized sources at such low frequencies. We estimate a lower limit to the polarized source surface density at 150 MHz, with our resolution and sensitivity, of 1 source per 6.2 square degrees. We find that our Faraday depth measurements are in agreement with previous measurements and have significantly smaller errors. Most of our sources show significant depolarization compared to 1.4 GHz, but there is a small population of sources with low depolarization indicating that their polarized emission is highly localized in Faraday depth. We predict that an extension of this work to the full LOTSS data would detect at least 3400 polarized sources using the same methods, and probably considerably more with improved data processing

    LOFAR MSSS: Discovery of a 2.56 Mpc giant radio galaxy associated with a disturbed galaxy group

    No full text
    We report on the discovery in the LOFAR Multifrequency Snapshot Sky Survey (MSSS) of a giant radio galaxy (GRG) with a projected size of 2.56 ± 0.07 Mpc projected on the sky. It is associated with the galaxy triplet UGC 9555, within which one is identified as a broad-line galaxy in the Sloan Digital Sky Survey (SDSS) at a redshift of 0.05453 ± 1 × 10-5, and with a velocity dispersion of 215.86 ± 6.34 km s-1. From archival radio observations we see that this galaxy hosts a compact flat-spectrum radio source, and we conclude that it is the active galactic nucleus (AGN) responsiblefor generating the radio lobes. The radio luminosity distribution of the jets, and the broad-line classification of the host AGN, indicate this GRG is orientated well out of the plane of the sky, making its physical size one of the largest known for any GRG. Analysis of the infrared data suggests that the host is a lenticular type galaxy with a large stellar mass (log M/Mo = 11.56 ± 0.12), and a moderate star formation rate (1.2 ± 0.3 Mo/year). Spatially smoothing the SDSS images shows the system around UGC 9555 to be significantly disturbed, with a prominent extension to the south-east. Overall, the evidence suggests this host galaxy has undergone one or more recent moderate merger events and is also experiencing tidal interactions with surrounding galaxies, which have caused the star formation and provided the supply of gas to trigger and fuel the Mpc-scale radio lobes
    corecore