2,161 research outputs found

    The role of the environment in eliciting phantom-like sensations in non-amputees

    Get PDF
    Following the amputation of a limb, many amputees report that they can still vividly perceive its presence despite conscious knowledge that it is not physically there. However, our ability to probe the mental representation of this experience is limited by the intractable and often distressing pain associated with amputation. Here, we present a method for eliciting phantom-like experiences in non-amputees using a variation of the rubber hand illusion in which a finger has been removed from the rubber hand. An interpretative phenomenological analysis revealed that the structure of this experience shares a wide range of sensory attributes with subjective reports of phantom limb experience. For example, when the space where the ring finger should have been on the rubber hand was stroked, 93% of participants (i.e., 28/30) reported the vivid presence of a finger that they could not see and a total of 57% (16/28) of participants who felt that the finger was present reported one or more additional sensory qualities such as tingling or numbness (25%; 7/28) and alteration in the perceived size of the finger (50%; 14/28). These experiences indicate the adaptability of body experience and share some characteristics of the way that phantom limbs are described. Participants attributed changes to the shape and size of their “missing” finger to the way in which the experimenter mimed stroking in the area occupied by the missing finger. This alteration of body perception is similar to the phenomenon of telescoping experienced by people with phantom limbs and suggests that our sense of embodiment not only depends on internal body representations but on perceptual information coming from peripersonal space

    The professionals speak: Practitioners’ perspectives on professional election campaigning

    Get PDF
    Faced with some fundamental changes in the socio-cultural, political and media environment, political parties in post-industrialized democracies have started to initiate substantial transformations of both their organizational structures and communicative practices. Those innovations, described as professionalization, become most obvious during election campaigns. In recent times, the number of empirical studies measuring the degree of political parties’ campaign professionalism has grown. They have relied on a broad spectrum of indicators derived from theory which have not been tested for their validity. For the first time, we put these indicators to a ‘reality check’ by asking top-ranked party secretaries and campaign managers in 12 European countries to offer their perceptions of professional election campaigning. Furthermore, we investigate whether any differences in understanding professionalism among party campaign practitioners can be explained by macro (country) and meso (party) factors. By and large, our results confirm the validity of most indicators applied in empirical studies on campaign professionalism so far. There are some party- and country-related differences in assessing campaign professionalism too, but the influence of most factors on practitioners’ evaluations is weak. Therefore, we conclude that largely there is a far-reaching European Union-wide common understanding of professional election campaigning

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    A meta-analytic review of stand-alone interventions to improve body image

    Get PDF
    Objective Numerous stand-alone interventions to improve body image have been developed. The present review used meta-analysis to estimate the effectiveness of such interventions, and to identify the specific change techniques that lead to improvement in body image. Methods The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on improving body image), (b) a control group was used, (c) participants were randomly assigned to conditions, and (d) at least one pretest and one posttest measure of body image was taken. Effect sizes were meta-analysed and moderator analyses were conducted. A taxonomy of 48 change techniques used in interventions targeted at body image was developed; all interventions were coded using this taxonomy. Results The literature search identified 62 tests of interventions (N = 3,846). Interventions produced a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies (d+ = -0.72). However, the effect size for body image was inflated by bias both within and across studies, and was reliable but of small magnitude once corrections for bias were applied. Effect sizes for the other outcomes were no longer reliable once corrections for bias were applied. Several features of the sample, intervention, and methodology moderated intervention effects. Twelve change techniques were associated with improvements in body image, and three techniques were contra-indicated. Conclusions The findings show that interventions engender only small improvements in body image, and underline the need for large-scale, high-quality trials in this area. The review identifies effective techniques that could be deployed in future interventions

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Mechanochemical basis of protein degradation by a double-ring AAA+ machine

    Get PDF
    Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ​ClpA enzyme from Escherichia coli, in complex with the ​ClpP peptidase, mechanically degrades proteins. We demonstrate that ​ClpA unfolds some protein substrates substantially faster than does the single-ring ​ClpX enzyme, which also degrades substrates in collaboration with ​ClpP. We find that ​ClpA is a slower polypeptide translocase and that it moves in physical steps that are smaller and more regular than steps taken by ​ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Grant AI-16892
    corecore