763 research outputs found
Nernst effect and dimensionality in the quantum limit
Nernst effect, the transverse voltage generated by a longitudinal thermal
gradient in presence of magnetic field has recently emerged as a very
sensitive, yet poorly understood, probe of electron organization in solids.
Here we report on an experiment on graphite, a macroscopic stack of graphene
layers, which establishes a fundamental link between dimensionality of an
electronic system and its Nernst response. In sharp contrast with single-layer
graphene, the Nernst signal sharply peaks whenever a Landau level meets the
Fermi level. This points to the degrees of freedom provided by finite
interlayer coupling as a source of enhanced thermoelectric response in the
vicinity of the quantum limit. Since Landau quantization slices a
three-dimensional Fermi surface, each intersection of a Landau level with the
Fermi level modifies the Fermi surface topology. According to our results, the
most prominent signature of such a topological phase transition emerges in the
transverse thermoelectric response.Comment: 13 pages, 4 figures and supplementary information; To appear in
Nature Physic
Angle dependence of the orbital magnetoresistance in bismuth
We present an extensive study of angle-dependent transverse magnetoresistance
in bismuth, with a magnetic field perpendicular to the applied electric current
and rotating in three distinct crystallographic planes. The observed angular
oscillations are confronted with the expectations of semi-classic transport
theory for a multi-valley system with anisotropic mobility and the agreement
allows us to quantify the components of the mobility tensor for both electrons
and holes. A quadratic temperature dependence is resolved. As Hartman argued
long ago, this indicates that inelastic resistivity in bismuth is dominated by
carrier-carrier scattering. At low temperature and high magnetic field, the
threefold symmetry of the lattice is suddenly lost. Specifically, a
rotation of magnetic field around the trigonal axis modifies the amplitude of
the magneto-resistance below a field-dependent temperature. By following the
evolution of this anomaly as a function of temperature and magnetic field, we
mapped the boundary in the (field, temperature) plane separating two electronic
states. In the less-symmetric state, confined to low temperature and high
magnetic field, the three Dirac valleys cease to be rotationally invariant. We
discuss the possible origins of this spontaneous valley polarization, including
a valley-nematic scenario.Comment: 15 pages, 14 figure
Multiple nodeless superconducting gaps in optimally-doped SrTiNbO
We present the first study of thermal conductivity in superconducting
SrTiNbO, sufficiently doped to be near its maximum critical
temperature. The bulk critical temperature, determined by the jump in specific
heat, occurs at a significantly lower temperature than the resistive T.
Thermal conductivity, dominated by the electron contribution, deviates from its
normal-state magnitude at bulk T, following a Bardeen-Rickayzen-Tewordt
(BRT) behavior, expected for thermal transport by Bogoliubov excitations.
Absence of a T-linear term at very low temperatures rules out the presence of
nodal quasi-particles. On the other hand, the field dependence of thermal
conductivity points to the existence of at least two distinct superconducting
gaps. We conclude that optimally-doped strontium titanate is a multigap
nodeless superconductor.Comment: 6 pages including a supplemen
Magnetic order in the pseudogap phase of high- superconductors
One of the leading issues in high- superconductors is the origin of the
pseudogap phase in underdoped cuprates. Using polarized elastic neutron
diffraction, we identify a novel magnetic order in the YBaCuO
system. The observed magnetic order preserves translational symmetry as
proposed for orbital moments in the circulating current theory of the pseudogap
state. To date, it is the first direct evidence of an hidden order parameter
characterizing the pseudogap phase in high- cuprates.Comment: 3 figure
Analyse de l’évolution morphodynamique de la plage du Truc Vert (Gironde) sur une période décennale
Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3
We report on high-field angle-dependent magneto-transport measurements on
epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At
low temperature, we observe quantum oscillations that demonstrate the
simultaneous presence of bulk and surface carriers. The magneto- resistance of
Bi2Se3 is found to be highly anisotropic. In the presence of a parallel
electric and magnetic field, we observe a strong negative longitudinal
magneto-resistance that has been consid- ered as a smoking-gun for the presence
of chiral fermions in a certain class of semi-metals due to the so-called axial
anomaly. Its observation in a three-dimensional topological insulator implies
that the axial anomaly may be in fact a far more generic phenomenon than
originally thought.Comment: 6 pages, 4 figure
Dietary carotenoids and the complex role of redness in the behavior of the firemouth cichlid Thorichthys meeki.
This dissertation takes a comprehensive approach to the role of dietary carotenoids on redness and the subsequent behaviors in the firemouth cichlid, Thorichthys meeki. I start with a brief introduction into signaling, the importance of carotenoids, and mate choice. The dissertation is then divided into three data chapters which are designed to stand as independent manuscripts. Chapter II documents how altering the availability of dietary carotenoids affects redness in the integument of male and female T. meeki. I tracked how redness changed in color and distribution in individuals over the course of 12 weeks. I confirm that a dichotomy in redness can be obtained in this time period via diet alone. However, carotenoids are used by animals for more than red ornamentation including color vision. To account for this potential effect of carotenoids in my study animals, I examined if color vision was affected by the high- and low-carotenoid diet treatments (chapter III). Furthermore, I determined whether redness (a trait for which T. meeki is named) is innately attractive to this species (chapter III). The sensory bias hypothesis suggests that males and females utilize traits that are innately appealing to the opposite sex to attract a mate. My final data chapter examines whether males and females use redness and other visual displays as a signal in mate selection (chapter IV). I conclude this dissertation by summarizing my findings and proposing future directions in which I wish to examine this system further (chapter V)
- …
