177 research outputs found
On the Sensitivity of Partial Redistribution Scattering Polarization Profiles to Various Atmospheric Parameters
This paper presents a detailed study of the scattering polarization profiles
formed under partial frequency redistribution (PRD) in two thermal models of
the solar atmosphere. Particular attention is given to understanding the
influence of several atmospheric parameters on the emergent fractional linear
polarization profiles. The shapes of these profiles are interpreted in
terms of the anisotropy of the radiation field, which in turn depends on the
source function gradient that sets the angular variation of the specific
intensity. We define a suitable frequency integrated anisotropy factor for PRD
that can be directly related to the emergent linear polarization. We show that
complete frequency redistribution is a good approximation to model weak
resonance lines. We also show that the emergent linear polarization profiles
can be very sensitive to the thermal structure of the solar atmosphere and, in
particular, to spatial variations of the damping parameter.Comment: 45 pages, 16 figures, accepted for publication in the Astrophysical
Journal (2010
Hanle effect in the solar Ba II D2 line: a diagnostic tool for chromospheric weak magnetic fields
The physics of the solar chromosphere depends in a crucial way on its
magnetic structure. However there are presently very few direct magnetic field
diagnostics available for this region. Here we investigate the diagnostic
potential of the Hanle effect on the Ba II D2 line resonance polarization for
the determination of weak chromospheric turbulent magnetic fields......Comment: In press in astronomy and astrophysic
Magnetic flux in the inter-network quiet Sun from comparison with numerical simulations
Khomenko et al. estimate the mean magnetic field strength of the quiet Sun to
be 20 G. The figure is smaller than several existing estimates, and it comes
from the comparison between observed Zeeman polarization signals and synthetic
signals from numerical simulations of magneto-convection. The numerical
simulations require an artificially large magnetic diffusivity, which smears
out magnetic structures smaller than the grid scale. Assuming a turbulent
cascade for the unresolved artificially smeared magnetic fields, we find that
their unsigned magnetic flux is at least as important as that explicitly shown
in the simulation. The unresolved fields do not produce Zeeman polarization but
contribute to the unsigned flux.Since they are not considered by Khomenko et
al., their mean magnetic field strength has to be regarded as a lower limit.
This kind of bias is not specific of a particular numerical simulation or a
spectral line. It is to be expected when observed quiet Sun Zeeman signals are
compared with synthetic signals from simulations.Comment: Accepted A&A. 4 pages, 0 figure
Hanle effect in the CN violet system with LTE modeling
Weak entangled magnetic fields with mixed polarity occupy the main part of
the quiet Sun. The Zeeman effect diagnostics fails to measure such fields
because of cancellation in circular polarization. However, the Hanle effect
diagnostics, accessible through the second solar spectrum, provides us with a
very sensitive tool for studying the distribution of weak magnetic fields on
the Sun. Molecular lines are very strong and even dominate in some regions of
the second solar spectrum. The CN system is
one of the richest and most promising systems for molecular diagnostics and
well suited for the application of the differential Hanle effect method. The
aim is to interpret observations of the CN
system using the Hanle effect and to obtain an estimation of the magnetic field
strength. We assume that the CN molecular layer is situated above the region
where the continuum radiation is formed and employ the single-scattering
approximation. Together with the Hanle effect theory this provides us with a
model that can diagnose turbulent magnetic fields. We have succeeded in fitting
modeled CN lines in several regions of the second solar spectrum to
observations and obtained a magnetic field strength in the range from 10--30 G
in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic
Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line
Polarization that is produced by coherent scattering can be modified by
magnetic fields via the Hanle effect. According to standard theory the Hanle
effect should only be operating in the Doppler core of spectral lines but not
in the wings. In contrast, our observations of the scattering polarization in
the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the
scattering polarization throughout the far line wings. This raises the question
whether the observed spatial variations in wing polarization have a magnetic or
non-magnetic origin. A magnetic origin may be possible if elastic collisions
are able to cause sufficient frequency redistribution to make the Hanle effect
effective in the wings without causing excessive collisional depolarization, as
suggested by recent theories for partial frequency redistribution with coherent
scattering in magnetic fields. To model the wing polarization we apply an
extended version of the technique based on the "last scattering approximation".
This model is highly successful in reproducing the observed Stokes
polarization (linear polarization parallel to the nearest solar limb),
including the location of the wing polarization maxima and the minima around
the Doppler core, but it fails to reproduce the observed spatial variations of
the wing polarization in terms of magnetic field effects with frequency
redistribution. This null result points in the direction of a non-magnetic
origin in terms of local inhomogeneities (varying collisional depolarization,
radiation-field anisotropies, and deviations from a plane-parallel atmospheric
stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa
Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure
The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS)
and, they respond to hG magnetic field strengths differently from the lines
used in solar magnetometry. This peculiarity has been employed to measure
magnetic field strengths in quiet Sun regions. However, the methods applied so
far assume the magnetic field to be constant in the resolution element. The
assumption is clearly insufficient to describe the complex quiet Sun magnetic
fields, biasing the results of the measurements. We present the first syntheses
of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how
the MnI lines weaken with increasing field strength. In particular, kG magnetic
concentrations produce NnI 5538 circular polarization signals (Stokes V) which
can be up to two orders of magnitude smaller than the weak magnetic field
approximation prediction. Consequently, (1) the polarization emerging from an
atmosphere having weak and strong fields is biased towards the weak fields, and
(2) HFS features characteristic of weak fields show up even when the magnetic
flux and energy are dominated by kG fields. For the HFS feature of MnI 5538 to
disappear the filling factor of kG fields has to be larger than the filling
factor of sub-kG fields. Stokes V depends on magnetic field inclination
according to the simple consine law. Atmospheres with unresolved velocities
produce asymmetric line profiles, which cannot be reproduced by simple
one-component model atmospheres. The uncertainty of the HFS constants do not
limit the use of MnI lines for magnetometry.Comment: Accepted for publication in ApJ. 10 pages, 14 figure
A Substantial Amount of Hidden Magnetic Energy in the Quiet Sun
Deciphering and understanding the small-scale magnetic activity of the quiet
solar photosphere should help to solve many of the key problems of solar and
stellar physics, such as the magnetic coupling to the outer atmosphere and the
coronal heating. At present, we can see only of the complex
magnetism of the quiet Sun, which highlights the need to develop a reliable way
to investigate the remaining 99%. Here we report three-dimensional radiative
tranfer modelling of scattering polarization in atomic and molecular lines that
indicates the presence of hidden, mixed-polarity fields on subresolution
scales. Combining this modelling with recent observational data we find a
ubiquitous tangled magnetic field with an average strength of G,
which is much stronger in the intergranular regions of solar surface convection
than in the granular regions. So the average magnetic energy density in the
quiet solar photosphere is at least two orders of magnitude greater than that
derived from simplistic one-dimensional investigations, and sufficient to
balance radiative energy losses from the solar chromosphere.Comment: 21 pages and 2 figures (letter published in Nature on July 15, 2004
Time-Dependent Behavior of Linear Polarization in Unresolved Photospheres, With Applications for The Hanle Effect
Aims: This paper extends previous studies in modeling time varying linear
polarization due to axisymmetric magnetic fields in rotating stars. We use the
Hanle effect to predict variations in net line polarization, and use geometric
arguments to generalize these results to linear polarization due to other
mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple
analytic models of rotating stars that are symmetric except for an axisymmetric
magnetic field to predict the polarization lightcurve due to the Hanle effect.
We highlight the effects for the variable line polarization as a function of
viewing inclination and field axis obliquity. Finally, we use geometric
arguments to generalize our results to linear polarization from the weak
transverse Zeeman effect. Results: We derive analytic expressions to
demonstrate that the variable polarization lightcurve for an oblique magnetic
rotator is symmetric. This holds for any axisymmetric field distribution and
arbitrary viewing inclination to the rotation axis. Conclusions: For the
situation under consideration, the amplitude of the polarization variation is
set by the Hanle effect, but the shape of the variation in polarization with
phase depends largely on geometrical projection effects. Our work generalizes
the applicability of results described in Lopez Ariste et al., inasmuch as the
assumptions of a spherical star and an axisymmetric field are true, and
provides a strategy for separating the effects of perspective from the Hanle
effect itself for interpreting polarimetric lightcurves.Comment: 6 pages; 4 figures. Includes an extra figure found only in this
preprint versio
Measuring the Hidden Aspects of Solar Magnetism
2008 marks the 100th anniversary of the discovery of astrophysical magnetic
fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines
in sunspots. With the introduction of Babcock's photoelectric magnetograph it
soon became clear that the Sun's magnetic field outside sunspots is extremely
structured. The field strengths that were measured were found to get larger
when the spatial resolution was improved. It was therefore necessary to come up
with methods to go beyond the spatial resolution limit and diagnose the
intrinsic magnetic-field properties without dependence on the quality of the
telescope used. The line-ratio technique that was developed in the early 1970s
revealed a picture where most flux that we see in magnetograms originates in
highly bundled, kG fields with a tiny volume filling factor. This led to
interpretations in terms of discrete, strong-field magnetic flux tubes embedded
in a rather field-free medium, and a whole industry of flux tube models at
increasing levels of sophistication. This magnetic-field paradigm has now been
shattered with the advent of high-precision imaging polarimeters that allow us
to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar
magnetism that have been hidden to Zeeman diagnostics. It is found that the
bulk of the photospheric volume is seething with intermediately strong, tangled
fields. In the new paradigm the field behaves like a fractal with a high degree
of self-similarity, spanning about 8 orders of magnitude in scale size, down to
scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Magnetic Coupling in the Quiet Solar Atmosphere
Three kinds of magnetic couplings in the quiet solar atmosphere are
highlighted and discussed, all fundamentally connected to the Lorentz force.
First the coupling of the convecting and overshooting fluid in the surface
layers of the Sun with the magnetic field. Here, the plasma motion provides the
dominant force, which shapes the magnetic field and drives the surface dynamo.
Progress in the understanding of the horizontal magnetic field is summarized
and discussed. Second, the coupling between acoustic waves and the magnetic
field, in particular the phenomenon of wave conversion and wave refraction. It
is described how measurements of wave travel times in the atmosphere can
provide information about the topography of the wave conversion zone, i.e., the
surface of equal Alfv\'en and sound speed. In quiet regions, this surface
separates a highly dynamic magnetic field with fast moving magnetosonic waves
and shocks around and above it from the more slowly evolving field of high-beta
plasma below it. Third, the magnetic field also couples to the radiation field,
which leads to radiative flux channeling and increased anisotropy in the
radiation field. It is shown how faculae can be understood in terms of this
effect. The article starts with an introduction to the magnetic field of the
quiet Sun in the light of new results from the Hinode space observatory and
with a brief survey of measurements of the turbulent magnetic field with the
help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
- …
