1,507 research outputs found
An operations semantics for pure dataflow
We prove the equivalence between an operational and an extensional semantics for pure dataflow.
The term pure dataflow refers to dataflow nets in which the nodes are functional (i.e. the output history is a function of the input history only) and the arcs are unbounded fifo queues.
Gilles Kahn gave a method for the representation of a pure dataflow net as a set of equations; one equation for each arc in the net. We present a complete proof that the operational behaviour of a pure dataflow net is exactly described by the least fixed point solution to its associated set of equations. Our model is completely general since our nodes have the universality property, in that, for any continuous history function there exists a node that will compute it. Moreover since our nets are not built from a set of sequential primitive nodes the model is not in the communicating sequential processes framework. On the contrary our nets have the abstraction property in that any net can be collapsed into a node.
The above proof gives complementary ways of viewing pure dataflow nets, that is, as either sets of equations or as graphs. It moreover gives rise to an elegant equational dataflow language. Pure dataflow then takes on an important role since it is a correct implementation for such a functional programming language; nodes being implementation of continuous history functions; arcs and datons being implementations of histories; and nets being mechanisms for computing the solutions to sets of equations
Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures
Experimental results obtained previously for the photoluminescence efficiency
(PL) of Ge quantum dots (QDs) are theoretically studied. A
- plot of PL versus QD diameter () resulted in an
identical slope for each Ge QD sample only when . We
identified that above 6.2 nm: due to a changing
effective mass (EM), while below 4.6 nm: due to
electron/ hole confinement. We propose that as the QD size is initially
reduced, the EM is reduced, which increases the Bohr radius and interface
scattering until eventually pure quantum confinement effects dominate at small
Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds
(Abridged) We present a new method for detecting and measuring compact
sources in conditions of intense, and highly variable, fore/background. While
all most commonly used packages carry out the source detection over the signal
image, our proposed method builds from the measured image a "curvature" image
by double-differentiation in four different directions. In this way point-like
as well as resolved, yet relatively compact, objects are easily revealed while
the slower varying fore/background is greatly diminished. Candidate sources are
then identified by looking for pixels where the curvature exceeds, in absolute
terms, a given threshold; the methodology easily allows us to pinpoint
breakpoints in the source brightness profile and then derive reliable guesses
for the sources extent. Identified peaks are fit with 2D elliptical Gaussians
plus an underlying planar inclined plateau, with mild constraints on size and
orientation. Mutually contaminating sources are fit with multiple Gaussians
simultaneously using flexible constraints. We ran our method on simulated
large-scale fields with 1000 sources of different peak flux overlaid on a
realistic realization of diffuse background. We find detection rates in excess
of 90% for sources with peak fluxes above the 3-sigma signal noise limit; for
about 80% of the sources the recovered peak fluxes are within 30% of their
input values.Comment: Accepted on A&
A proof of the Kahn principle for input/output automata
AbstractWe use input/output automata to define a simple and general model of networks of concurrently executing, nondeterministic processes that communicate through unidirectional, named ports. A notion of the input/output relation computed by a process is defined, and determinate processes are defined to be processes whose input/output relations are single-valued. We show that determinate processes compute continuous functions, and that networks of determinate processes obey Kahn's fixed-point principle. Although these results are already known, our contribution lies in the fact that the input/output automata model yields extremely simple proofs of them (the simplest we have seen), in spite of its generality
Direct Estimate of Cirrus Noise in Herschel Hi-GAL Images
In Herschel images of the Galactic plane and many star forming regions, a
major factor limiting our ability to extract faint compact sources is cirrus
confusion noise, operationally defined as the "statistical error to be expected
in photometric measurements due to confusion in a background of fluctuating
surface brightness". The histogram of the flux densities of extracted sources
shows a distinctive faint-end cutoff below which the catalog suffers from
incompleteness and the flux densities become unreliable. This empirical cutoff
should be closely related to the estimated cirrus noise and we show that this
is the case. We compute the cirrus noise directly, both on Herschel images from
which the bright sources have been removed and on simulated images of cirrus
with statistically similar fluctuations. We connect these direct estimates with
those from power spectrum analysis, which has been used extensively to predict
the cirrus noise and provides insight into how it depends on various
statistical properties and photometric operational parameters. We report
multi-wavelength power spectra of diffuse Galactic dust emission from Hi-GAL
observations at 70 to 500 microns within Galactic plane fields at l= 30 degrees
and l= 59 degrees. We find that the exponent of the power spectrum is about -3.
At 250 microns, the amplitude of the power spectrum increases roughly as the
square of the median brightness of the map and so the expected cirrus noise
scales linearly with the median brightness. Generally, the confusion noise will
be a worse problem at longer wavelengths, because of the combination of lower
angular resolution and the rising power spectrum of cirrus toward lower spatial
frequencies, but the photometric signal to noise will also depend on the
relative spectral energy distribution of the source compared to the cirrus.Comment: 4 pages (in journal), 3 figures, Astronomy and Astrophysics, accepted
for publication 13 May 201
Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane
Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryContext. Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first time to study the dust emissivity variations in the inner regions of the Galactic plane at resolution below 1°. Aims. We present maps of the emissivity spectral index derived from the combined Herschel PACS 160 μm, SPIRE 250 μm, 350 μm, and 500 μm data, and the IRIS 100 μm data, and we analyze the spatial variations of the spectral index as a function of dust temperature and wavelength in the two science demonstration phase Hi-GAL fields, centered at l = 30° and l = 59°. Methods. Applying two different methods, we determine both dust temperature and emissivity spectral index between 100 and 500 μm, at an angular resolution (θ) of 4'. Results. Combining both fields, the results show variations of the emissivity spectral index in the range 1.8–2.6 for temperatures between 14 and 23 K. The median values of the spectral index are similar in both fields, i.e. 2.3 in the range 100–500 μm, while the median dust temperatures are equal to 19.1 K and 16.0 K in the l = 30° and l = 59° field, respectively. Statistically, we do not see any significant deviations in the spectra from a power law emissivity between 100 and 500 μm. We confirm the existence of an inverse correlation between the emissivity spectral index and dust temperature, found in previous analyses.Peer reviewe
Production and efficacy of a low-cost recombinant pneumococcal protein polysaccharide conjugate vaccine.
Streptococcus pneumoniae is the leading cause of bacterial pneumonia. Although this is a vaccine preventable disease, S. pneumoniae still causes over 1 million deaths per year, mainly in children under the age of five. The biggest disease burden is in the developing world, which is mainly due to unavailability of vaccines due to their high costs. Protein polysaccharide conjugate vaccines are given routinely in the developed world to children to induce a protective antibody response against S. pneumoniae. One of these vaccines is Prevnar13, which targets 13 of the 95 known capsular types. Current vaccine production requires growth of large amounts of the 13 serotypes, and isolation of the capsular polysaccharide that is then chemically coupled to a protein, such as the diphtheria toxoid CRM197, in a multistep expensive procedure. In this study, we design, purify and produce novel recombinant pneumococcal protein polysaccharide conjugate vaccines in Escherichia coli, which act as mini factories for the low-cost production of conjugate vaccines. Recombinant vaccine efficacy was tested in a murine model of pneumococcal pneumonia; ability to protect against invasive disease was compared to that of Prevnar13. This study provides the first proof of principle that protein polysaccharide conjugate vaccines produced in E. coli can be used to prevent pneumococcal infection. Vaccines produced in this manner may provide a low-cost alternative to the current vaccine production methodology
Star formation triggered by HII regions in our Galaxy: First results for N49 from the Herschel infrared survey of the Galactic plane
It has been shown that by means of different physical mechanisms the
expansion of HII regions can trigger the formation of new stars of all masses.
This process may be important to the formation of massive stars but has never
been quantified in the Galaxy. We use Herschel-PACS and -SPIRE images from the
Herschel Infrared survey of the Galactic plane, Hi-GAL, to perform this study.
We combine the Spitzer-GLIMPSE and -MIPSGAL, radio-continuum and sub-millimeter
surveys such as ATLASGAL with Hi-GAL to study Young Stellar Objects (YSOs)
observed towards Galactic HII regions. We select a representative HII region,
N49, located in the field centered on l=30 degr observed as part of the Hi-GAL
Science Demonstration Phase, to demonstrate the importance Hi-GAL will have to
this field of research. Hi-GAL PACS and SPIRE images reveal a new population of
embedded young stars, coincident with bright ATLASGAL condensations. The Hi-GAL
images also allow us, for the first time, to constrain the physical properties
of the newly formed stars by means of fits to their spectral energy
distribution. Massive young stellar objects are observed at the borders of the
N49 region and represent second generation massive stars whose formation has
been triggered by the expansion of the ionized region. Hi-GAL enables us to
detect a population of young stars at different evolutionary stages, cold
condensations only being detected in the SPIRE wavelength range. The far IR
coverage of Hi-GAL strongly constrains the physical properties of the YSOs. The
large and unbiased spatial coverage of this survey offers us a unique
opportunity to lead, for the first time, a global study of star formation
triggered by HII regions in our Galaxy.Comment: 4 pages, 2 figures, accepted by A&A (Special issue on Herschel first
results
Mapping the column density and dust temperature structure of IRDCs with Herschel
Infrared dark clouds (IRDCs) are cold and dense reservoirs of gas potentially
available to form stars. Many of these clouds are likely to be pristine
structures representing the initial conditions for star formation. The study
presented here aims to construct and analyze accurate column density and dust
temperature maps of IRDCs by using the first Herschel data from the Hi-GAL
galactic plane survey. These fundamental quantities, are essential for
understanding processes such as fragmentation in the early stages of the
formation of stars in molecular clouds. We have developed a simple
pixel-by-pixel SED fitting method, which accounts for the background emission.
By fitting a grey-body function at each position, we recover the spatial
variations in both the dust column density and temperature within the IRDCs.
This method is applied to a sample of 22 IRDCs exhibiting a range of angular
sizes and peak column densities. Our analysis shows that the dust temperature
decreases significantly within IRDCs, from background temperatures of 20-30 K
to minimum temperatures of 8-15 K within the clouds, showing that dense
molecular clouds are not isothermal. Temperature gradients have most likely an
important impact on the fragmentation of IRDCs. Local temperature minima are
strongly correlated with column density peaks, which in a few cases reach NH2 =
1 x 10^{23} cm^{-2}, identifying these clouds as candidate massive prestellar
cores. Applying this technique to the full Hi-GAL data set will provide
important constraints on the fragmentation and thermal properties of IRDCs, and
help identify hundreds of massive prestellar core candidates.Comment: Accepted for publication in A&A Herschel special issu
Rationing tests for drug-resistant tuberculosis - who are we prepared to miss?
BACKGROUND: Early identification of patients with drug-resistant tuberculosis (DR-TB) increases the likelihood of treatment success and interrupts transmission. Resource-constrained settings use risk profiling to ration the use of drug susceptibility testing (DST). Nevertheless, no studies have yet quantified how many patients with DR-TB this strategy will miss. METHODS: A total of 1,545 subjects, who presented to Lima health centres with possible TB symptoms, completed a clinic-epidemiological questionnaire and provided sputum samples for TB culture and DST. The proportion of drug resistance in this population was calculated and the data was analysed to demonstrate the effect of rationing tests to patients with multidrug-resistant TB (MDR-TB) risk factors on the number of tests needed and corresponding proportion of missed patients with DR-TB. RESULTS: Overall, 147/1,545 (9.5%) subjects had culture-positive TB, of which 32 (21.8%) had DR-TB (MDR, 13.6%; isoniazid mono-resistant, 7.5%; rifampicin mono-resistant, 0.7%). A total of 553 subjects (35.8%) reported one or more MDR-TB risk factors; of these, 506 (91.5%; 95% CI, 88.9-93.7%) did not have TB, 32/553 (5.8%; 95% CI, 3.4-8.1%) had drug-susceptible TB, and only 15/553 (2.7%; 95% CI, 1.5-4.4%) had DR-TB. Rationing DST to those with an MDR-TB risk factor would have missed more than half of the DR-TB population (17/32, 53.2%; 95% CI, 34.7-70.9). CONCLUSIONS: Rationing DST based on known MDR-TB risk factors misses an unacceptable proportion of patients with drug-resistance in settings with ongoing DR-TB transmission. Investment in diagnostic services to allow universal DST for people with presumptive TB should be a high priority
- …
