1,779 research outputs found
Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force
The innermost stable circular orbit (ISCO) delimits the transition from
circular orbits to those that plunge into a black hole. In the test-mass limit,
well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes.
In the finite-mass case, there are a large variety of ways to define an ISCO in
a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO
condition of Blanchet & Iyer (2003) to the case of spinning (nonprecessing)
binaries. The Blanchet-Iyer ISCO condition has two desirable and unexpected
properties: (1) it exactly reproduces the Schwarzschild ISCO in the test-mass
limit, and (2) it accurately approximates the recently-calculated shift in the
Schwarzschild ISCO frequency due to the conservative-piece of the gravitational
self-force [Barack & Sago (2009)]. The generalization of this ISCO condition to
spinning binaries has the property that it also exactly reproduces the Kerr
ISCO in the test-mass limit (up to the order at which PN spin corrections are
currently known). The shift in the ISCO due to the spin of the test-particle is
also calculated. Remarkably, the gauge-invariant PN ISCO condition exactly
reproduces the ISCO shift predicted by the Papapetrou equations for a
fully-relativistic spinning particle. It is surprising that an analysis of the
stability of the standard PN equations of motion is able (without any form of
"resummation") to accurately describe strong-field effects of the Kerr
spacetime. The ISCO frequency shift due to the conservative self-force in Kerr
is also calculated from this new ISCO condition, as well as from the
effective-one-body Hamiltonian of Barausse & Buonanno (2010). These results
serve as a useful point-of-comparison for future gravitational self-force
calculations in the Kerr spacetime.Comment: 17 pages, 2 figures, 1 table. v2: references added; minor changes to
match published versio
Gravitational-wave memory revisited: memory from the merger and recoil of binary black holes
Gravitational-wave memory refers to the permanent displacement of the test
masses in an idealized (freely-falling) gravitational-wave interferometer.
Inspiraling binaries produce a particularly interesting form of memory--the
Christodoulou memory. Although it originates from nonlinear interactions at 2.5
post-Newtonian order, the Christodoulou memory affects the gravitational-wave
amplitude at leading (Newtonian) order. Previous calculations have computed
this non-oscillatory amplitude correction during the inspiral phase of binary
coalescence. Using an "effective-one-body" description calibrated with the
results of numerical relativity simulations, the evolution of the memory during
the inspiral, merger, and ringdown phases, as well as the memory's final
saturation value, are calculated. Using this model for the memory, the
prospects for its detection are examined, particularly for supermassive black
hole binary coalescences that LISA will detect with high signal-to-noise
ratios. Coalescing binary black holes also experience center-of-mass recoil due
to the anisotropic emission of gravitational radiation. These recoils can
manifest themselves in the gravitational-wave signal in the form of a "linear"
memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects
for observing these effects are also discussed.Comment: 6 pages, 2 figures; accepted to the proceedings of the 7th
International LISA Symposium; v2: updated figures and signal-to-noise ratios,
several minor changes to the tex
Rotational modulation of X-ray emission in Orion Nebula young stars
We investigate the spatial distribution of X-ray emitting plasma in a sample
of young Orion Nebula Cluster stars by modulation of their X-ray light-curves
due to stellar rotation. The study, part of the Chandra Orion Ultradeep Project
(COUP), is made possible by the exceptional length of the observation: 10 days
of ACIS integration during a time span of 13 days, yielding a total of 1616
detected sources in the 17x17 arcmin field of view. We here focus on a
subsample of 233 X-ray-bright stars with known rotational periods. We search
for X-ray modulation using the Lomb Normalized Periodogram method.
X-ray modulation related to the rotation period is detected in at least 23
stars with periods between 2 and 12 days and relative amplitudes ranging from
20% to 70%. In 16 cases, the X-ray modulation period is similar to the stellar
rotation period while in seven cases it is about half that value, possibly due
to the presence of X-ray emitting structures at opposite stellar longitudes.
These results constitute the largest sample of low mass stars in which X-ray
rotational modulation has been observed. The detection of rotational modulation
indicates that the X-ray emitting regions are distributed inhomogeneneously in
longitude and do not extend to distances significantly larger than the stellar
radius. Modulation is observed in stars with saturated activity levels
(L_X/L_bol ~ 10^(-3)) showing that saturation is not due to the filling of the
stellar surface with X-ray emitting regions.Comment: 41 pages, 15 figures, ApJS in press. Figure 15 (34 panels) is an
on-line only figure and is not included. A pdf file which includes figure 15
as well as full resolution versions of figure 10 and 11 is available at:
http://www.astropa.unipa.it/~ettoref/COUP_RotMod.pd
Inferring coronal structure from X-ray lightcurves and Doppler shifts: a Chandra study of AB Doradus
The Chandra X-ray observatory monitored the single cool star, AB Doradus,
continuously for a period lasting 88 ksec (1.98 Prot) in 2002 December with the
LETG/HRC-S. The X-ray lightcurve shows rotational modulation, with three peaks
that repeat in two consecutive rotation cycles. These peaks may indicate the
presence of compact emitting regions in the quiescent corona. Centroid shifts
as a function of phase in the strongest line profile, O VIII 18.97 A, indicate
Doppler rotational velocities with a semi-amplitude of 30 +/- 10 km/s. By
taking these diagnostics into account along with constraints on the rotational
broadening of line profiles (provided by archival Chandra HETG Fe XVII and FUSE
Fe XVIII profile) we can construct a simple model of the X-ray corona that
requires two components. One of these components is responsible for 80% of the
X-ray emission, and arises from the pole and/or a homogeneously distributed
corona. The second component consists of two or three compact active regions
that cause modulation in the lightcurve and contribute to the O VIII centroid
shifts. These compact regions account for 16% of the emission and are located
near the stellar surface with heights of less than 0.3R*. At least one of the
compact active regions is located in the partially obscured hemisphere of the
inclined star, while one of the other active regions may be located at 40
degrees. High quality X-ray data such as these can test the models of the
coronal magnetic field configuration as inferred from magnetic Zeeman Doppler
imaging.Comment: 28 pages, 11 figures, accepted by Ap
The nature of the fluorescent iron line in V 1486 Ori
The fluorescent 6.4 keV iron line provides information on cool material in
the vicinity of hard X-ray sources as well as on the characteristics of the
X-ray sources themselves. First discovered in the X-ray spectra of the flaring
Sun, X-ray binaries and active galactic nuclei (AGN), the fluorescent line was
also observed in a number of stellar X-ray sources. The young stellar object
(YSO) V1486 Ori was observed in the framework of the Chandra Ultra Deep Project
(COUP) as the source COUP 331. We investigate its spectrum, with emphasis on
the strength and time variability of the fluorescent iron K-alpha line, derive
and analyze the light curve of COUP 331 and proceed with a time-resolved
spectral analysis of the observation. The light curve of V 1486 Ori shows two
major flares, the first one lasting for (approx) 20 ks with a peak X-ray
luminosity of 2.6*10^{32} erg/s (dereddened in the 1-10 keV band) and the
second one -- only partially observed -- for >60 ks with an average X-ray
luminosity of 2.4*10^{31} erg/s (dereddened). The spectrum of the first flare
is very well described by an absorbed thermal model at high temperature, with a
pronounced 6.7 keV iron line complex, but without any fluorescent K-alpha line.
The X-ray spectrum of the second flare is characterized by even higher
temperatures (>= 10 keV) without any detectable 6.7 keV Fe XXV feature, but
with a very strong fluorescent iron K-alpha line appearing predominantly in the
20 ks rise phase of the flare. Preliminary model calculations indicate that
photoionization is unlikely to account for the entire fluorescent emission
during the rise phase.Comment: 4 pages, letter, accepted for publication in A&
Fifteen years in the high-energy life of the solar-type star HD 81809. XMM-Newton observations of a stellar activity cycle
Aims. The data set of the long-term XMM-Newton monitoring program of HD 81809
is analyzed to study its X-ray cycle, to investigate if the latter is related
to the chromospheric one, to infer the structure of the corona of HD 81809, and
to explore if the coronal activity of HD 81809 can be ascribed to phenomena
similar to the solar ones and, therefore, considered an extension of the solar
case. Methods. We analyze the observations of HD 81809 performed with
XMM-Newton with a regular cadence of 6 months from 2001 to 2016 and
representing one of the longest available observational baseline (~yr)
for a solar-like star with a well-studied chromospheric cycle (with a period of
~yr). We investigate the modulation of coronal luminosity and
temperature and its relation with the chromospheric cycle. We interpret the
data in terms of a mixture of solar-like coronal regions, adopting a
methodology originally proposed to study the Sun as an X-ray star. Results. The
observations show a well-defined regular cyclic modulation of the X-ray
luminosity that reflects the activity level of HD 81809. The data covers
approximately two cycles of coronal activity; the modulation has an amplitude
of a factor of (excluding evident flares, as in the June 2002
observation) and a period of ~yr, consistent with that of the
chromospheric cycle. We demonstrate that the corona of HD 81809 can be
interpreted as an extension of the solar case and it can be modeled with a
mixture of solar-like coronal regions along the whole cycle. The activity level
is mainly determined by a varying coverage of very bright active regions,
similar to cores of active regions observed in the Sun. Evidence of unresolved
significant flaring activity is present especially in proximity of cycle
maxima.Comment: 11 pages, 5 Figures, A&A accepte
Coronal activity cycles in nearby G and K stars - XMM-Newton monitoring of 61 Cygni and Alpha Centauri
We use X-ray observations of the nearby binaries 61 Cyg A/B (K5V and K7V) and
Alpha Cen A/B (G2V and K1V) to study the long-term evolution of magnetic
activity in weakly to moderately active G + K dwarfs over nearly a decade.
Specifically we search for X-ray activity cycles and related coronal changes
and compare them to the solar behavior. For 61 Cyg A we find a regular coronal
activity cycle analog to its 7.3 yr chromospheric cycle. The X-ray brightness
variations are with a factor of three significantly lower than on the Sun, yet
the changes of coronal properties resemble the solar behavior with larger
variations occurring in the respective hotter plasma components. 61 Cyg B does
not show a clear cyclic coronal trend so far, but the X-ray data matches the
more irregular chromospheric cycle. Both Alpha Cen stars exhibit significant
long-term X-ray variability. Alpha Cen A shows indications for cyclic
variability of an order of magnitude with a period of about 12-15 years; the
Alpha Cen B data suggests an X-ray cycle with an amplitude of about six to
eight and a period of 8-9 years. The sample stars exhibit X-ray luminosities
ranging between Lx < 1x10^26 - 3x10^27 erg s^-1 in the 0.2-2.0 keV band and
have coronae dominated by cool plasma with variable average temperatures of
around 1.0-2.5 MK. We find that coronal activity cycles are apparently a common
phenomenon in older, slowly rotating G and K stars. The spectral changes of the
coronal X-ray emission over the cycles are solar-like in all studied targets.Comment: 11 pages, 9 figures, accepted by Astronomy and Astrophysic
- …
