24 research outputs found
A mammalianized synthetic nitroreductase gene for high-level expression
Background
The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy.
Methods
We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays.
Results
In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect.
Conclusion
Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans
E. coli NfsA: an alternative nitroreductase for prodrug activation gene therapy in combination with CB1954
Prodrug activation gene therapy is a developing approach to cancer treatment, whereby prodrug-activating enzymes are expressed in tumour cells. After administration of a non-toxic prodrug, its conversion to cytotoxic metabolites directly kills tumour cells expressing the activating enzyme, whereas the local spread of activated metabolites can kill nearby cells lacking the enzyme (bystander cell killing). One promising combination that has entered clinical trials uses the nitroreductase NfsB from Escherichia coli to activate the prodrug, CB1954, to a potent bifunctional alkylating agent. NfsA, the major E. coli nitroreductase, has greater activity with nitrofuran antibiotics, but it has not been compared in the past with NfsB for the activation of CB1954. We show superior in vitro kinetics of CB1954 activation by NfsA using the NADPH cofactor, and show that the expression of NfsA in bacterial or human cells results in a 3.5- to 8-fold greater sensitivity to CB1954, relative to NfsB. Although NfsB reduces either the 2-NO2 or 4-NO2 positions of CB1954 in an equimolar ratio, we show that NfsA preferentially reduces the 2-NO2 group, which leads to a greater bystander effect with cells expressing NfsA than with NfsB. NfsA is also more effective than NfsB for cell sensitisation to nitrofurans and to a selection of alternative, dinitrobenzamide mustard (DNBM) prodrugs
Indirect electrochemical oxidation of o-chloro toluene to 0-chloro benzaldehyde using ceric methane sulphonate
O-chloro benzaldehyde finds wide applications as chemical intermediates, pharmaceuticals, optical brighteners etc. It is nomlally produced by acid hydrolysis, but the process generates chlorinated by-products and has poor selectivity. Indirect electrochemical oxidation of o-chloro toluene using ceric mediators otTers a facile and clean route for the production of the aldehyde. In this paper results are reported for the oxidation of o-chloro toluene to o-chloro benzaldehyde using eerie methane sulphonate followed by electrochemical regeneration of eerie from cerous thereby making the process cyclic. 60-70% selectivities have been achieved for the chemical oxidation of o· chloro toluene to o-ehloro benzaldehyde while the electrochemical regeneration of eerie from cerous proceeds with 70-80% current efficiencies
