154 research outputs found
Target RNAs strike back on MicroRNAs
MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell-or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3′-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3′ end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns.Fil: Fuchs Wightman, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Giono, Luciana Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Fededa, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: de la Mata, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis
Syntaxin 16 is a master recruitment factor for cytokinesis
Recently it was shown that both recycling endosome and endosomal sorting complex required for transport (ESCRT) components are required for cytokinesis, in which they are believed to act in a sequential manner to bring about secondary ingression and abscission, respectively. However, it is not clear how either of these complexes is targeted to the midbody and whether their delivery is coordinated. The trafficking of membrane vesicles between different intracellular organelles involves the formation of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. Although membrane traffic is known to play an important role in cytokinesis, the contribution and identity of intracellular SNAREs to cytokinesis remain unclear. Here we demonstrate that syntaxin 16 is a key regulator of cytokinesis, as it is required for recruitment of both recycling endosome–associated Exocyst and ESCRT machinery during late telophase, and therefore that these two distinct facets of cytokinesis are inextricably linked
Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in eLife 6 (2017): e30867, doi:10.7554/eLife.30867.The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.DWG has received
funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under
grant agreement no. 241548 (MitoSys) and no. 258068 (Systems Microscopy), an ERC Starting Grant
under agreement no. 281198 (DIVIMAGE), and from the Austrian Science Fund (FWF) project no.
SFB F34-06 (Chromosome Dynamics). FS has received funding from an EMBO long-term fellowship
(ALTF 1447–2012). SM has received funding from Human Frontier Science Program cross-disciplinary
fellowship (LT000096/2011)
Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination
Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This delamination process involves adherens junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membrane are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin-cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity and we identify Drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.Impact statement: Microtubules are nucleated by the centrosome of the primary cilium in the apical end-foot of neuroepithelial cells and interdependent microtubule and actin dynamics are required here to orchestrate delamination of newborn neurons
RNA Polymerase II Elongation at the Crossroads of Transcription and Alternative Splicing
The elongation phase of transcription lies at the core of several simultaneous and coupled events leading to alternative splicing regulation. Although underestimated in the past, it is at this phase of the transcription cycle where complexes affecting the transcription machinery itself, chromatin structure, posttranscriptional gene regulation and pre-mRNA processing converge to regulate each other or simply to consolidate higher-order complexes and functions. This paper focuses on the multiple processes that take place during transcription elongation which ultimately regulate the outcome of alternative splicing decisions
A polar mechanism coordinates different regions of alternative splicing within a single gene
Alternative splicing plays a key role in generating protein diversity. Transfections with minigenes revealed coordination between two distant, alternatively spliced exons in the same gene. Mutations that either inhibit or stimulate inclusion of the upstream alternative exon deeply affect inclusion of the downstream one. However, similar mutations at the downstream alternative exon have little effect on the upstream one. This polar effect is promoter specific and is enhanced by inhibition of transcriptional elongation. Consistently, cells from mutant mice with either constitutive or null inclusion of a fibronectin alternative exon revealed coordination with a second alternative splicing region, located far downstream. Using allele-specific RT-PCR, we demonstrate that this coordination occurs in cis and is also affected by transcriptional elongation rates. Bioinformatics supports the generality of these findings, indicating that 25% of human genes contain multiple alternative splicing regions and identifying several genes with nonrandom distribution of mRNA isoforms at two alternative regions. Copyright ©2005 by Elsevier Inc.Fil:Fededa, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Petrillo, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Kadener, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Nogués, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pelisch, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Baralle, F.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Muro, A.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Kornblihtt, A.R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Coupling changes in cell shape to chromosome segregation
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance
Target RNAs Strike Back on MicroRNAs
MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell- or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3′-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3′ end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns
Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing
Alternative pre-mRNA splicing allows dramatic expansion of the eukaryotic proteome and facilitates cellular response to changes in environmental conditions. The Saccharomyces cerevisiae gene SUS1, which encodes a protein involved in mRNA export and histone H2B deubiquitination, contains two introns; non-canonical sequences in the first intron contribute to its retention, a common form of alternative splicing in plants and fungi. Here we show that the pattern of SUS1 splicing changes in response to environmental change such as temperature elevation, and the retained intron product is subject to nonsense-mediated decay. The activities of different splicing factors determine the pattern of SUS1 splicing, including intron retention and exon skipping. Unexpectedly, removal of the 3′ intron is affected by splicing of the upstream intron, suggesting that cross-exon interactions influence intron removal. Production of different SUS1 isoforms is important for cellular function, as we find that the temperature sensitivity and histone H2B deubiquitination defects observed in sus1Δ cells are only partially suppressed by SUS1 cDNA, but SUS1 that is able to undergo splicing complements these phenotypes. These data illustrate a role for S. cerevisiae alternative splicing in histone modification and cellular function and reveal important mechanisms for splicing of yeast genes containing multiple introns
- …
