1,455 research outputs found

    The origin of physical variations in the star formation law

    Full text link
    Observations of external galaxies and of local star-forming clouds in the Milky Way have suggested a variety of star formation laws, i.e., simple direct relations between the column density of star formation (Sigma_SFR: the amount of gas forming stars per unit area and time) and the column density of available gas (Sigma_gas). Extending previous studies, we show that these different, sometimes contradictory relations for Milky Way clouds, nearby galaxies, and high-redshift discs and starbursts can be combined in one universal star formation law in which Sigma_SFR is about 1% of the local gas collapse rate, Sigma_gas/t_ff, but a significant scatter remains in this relation. Using computer simulations and theoretical models, we find that the observed scatter may be primarily controlled by physical variations in the Mach number of the turbulence and by differences in the star formation efficiency. Secondary variations can be induced by changes in the virial parameter, turbulent driving and magnetic field. The predictions of our models are testable with observations that constrain both the Mach number and the star formation efficiency in Milky Way clouds, external disc and starburst galaxies at low and high redshift. We also find that reduced telescope resolution does not strongly affect such measurements when Sigma_SFR is plotted against Sigma_gas/t_ff.Comment: Published December 21, 2013 in MNRAS 436 (4): 3167-317

    The turbulent formation of stars

    Full text link
    How stars are born from clouds of gas is a rich physics problem whose solution will inform our understanding of not just stars but also planets, galaxies, and the universe itself. Star formation is stupendously inefficient. Take the Milky Way. Our galaxy contains about a billion solar masses of fresh gas available to form stars-and yet it produces only one solar mass of new stars a year. Accounting for that inefficiency is one of the biggest challenges of modern astrophysics. Why should we care about star formation? Because the process powers the evolution of galaxies and sets the initial conditions for planet formation and thus, ultimately, for life.Comment: published in Physics Today, cover story, see http://www.mso.anu.edu.au/~chfeder/pubs/physics_today/physics_today.htm

    Inefficient star formation through turbulence, magnetic fields and feedback

    Full text link
    Star formation is inefficient. Only a few percent of the available gas in molecular clouds forms stars, leading to the observed low star formation rate (SFR). The same holds when averaged over many molecular clouds, such that the SFR of whole galaxies is again surprisingly low. Indeed, considering the low temperatures, molecular clouds should be highly gravitationally unstable and collapse on their global mean freefall timescale. And yet, they are observed to live about 10-100 times longer, i.e., the SFR per freefall time (SFR_ff) is only a few percent. Thus, other physical mechanisms must counteract the quick global collapse. Turbulence, magnetic fields and stellar feedback have been proposed as regulating agents, but it is still unclear which of these processes is the most important and what their relative contributions are. Here we run high-resolution simulations including gravity, turbulence, magnetic fields, and jet/outflow feedback. We confirm that clouds collapse on a mean freefall time, if only gravity is considered, producing stars at an unrealistic rate. In contrast, if turbulence, magnetic fields, and feedback are included step-by-step, the SFR is reduced by a factor of 2-3 with each additional physical ingredient. When they all act in concert, we find a constant SFR_ff = 0.04, currently the closest match to observations, but still about a factor of 2-4 higher than the average. A detailed comparison with other simulations and with observations leads us to conclude that only models with turbulence producing large virial parameters, and including magnetic fields and feedback can produce realistic SFRs.Comment: 9 pages, 3 figures, MNRAS, in press, movies available: http://www.mso.anu.edu.au/~chfeder/pubs/ineff_sf/ineff_sf.html, see also astrobite article: http://astrobites.org/2015/04/28/why-is-star-formation-so-inefficient

    The density structure and star formation rate of non-isothermal polytropic turbulence

    Get PDF
    The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths, and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P~rho^Gamma, T~rho^(Gamma-1). We use grid resolutions of 2048^3 cells and compare polytropic exponents Gamma=0.7 (soft EOS), Gamma=1 (isothermal EOS), and Gamma=5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Gamma<1, while Gamma>1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Gamma>1. In contrast, the PDF becomes closer to a lognormal distribution for Gamma<=1. We derive and test a new density variance - Mach number relation that takes Gamma into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Gamma and find that it decreases by a factor of ~5 from Gamma=0.7 to Gamma=5/3.Comment: 18 pages, 10 figures, MNRAS accepted, simulation movies at http://www.mso.anu.edu.au/~chfeder/pubs/polytropic/polytropic.htm

    An Observational Method to Measure the Relative Fractions of Solenoidal and Compressible Modes in Interstellar Clouds

    Full text link
    We introduce a new method for observationally estimating the fraction of momentum density (ρv{\rho}{\mathbf{v}}) power contained in solenoidal modes (for which ρv=0\nabla \cdot {\rho}{\mathbf{v}} = 0) in molecular clouds. The method is successfully tested with numerical simulations of supersonic turbulence that produce the full range of possible solenoidal/compressible fractions. At present the method assumes statistical isotropy, and does not account for anisotropies caused by (e.g.) magnetic fields. We also introduce a framework for statistically describing density--velocity correlations in turbulent clouds.Comment: 20 pages, 13 figures, accepted for publication in MNRA

    Connection between dense gas mass fraction, turbulence driving, and star formation efficiency of molecular clouds

    Full text link
    We examine the physical parameters that affect the accumulation of gas in molecular clouds to high column densities where the formation of stars takes place. In particular, we analyze the dense gas mass fraction (DGMF) in a set of self-gravitating, isothermal, magnetohydrodynamic turbulence simulations including sink particles to model star formation. We find that the simulations predict close to exponential DGMFs over the column density range N(H2) = 3-25 x 10^{21} cm^{-2} that can be easily probed via, e.g., dust extinction measurements. The exponential slopes correlate with the type of turbulence driving and also with the star formation efficiency. They are almost uncorrelated with the sonic Mach number and magnetic-field strength. The slopes at early stages of cloud evolution are steeper than at the later stages. A comparison of these predictions with observations shows that only simulations with relatively non-compressive driving (b ~< 0.4) agree with the DGMFs of nearby molecular clouds. Massive infrared dark clouds can show DGMFs that are in agreement with more compressive driving. The DGMFs of molecular clouds can be significantly affected by how compressive the turbulence is on average. Variations in the level of compression can cause scatter to the DGMF slopes, and some variation is indeed necessary to explain the spread of the observed DGMF slopes. The observed DGMF slopes can also be affected by the clouds' star formation activities and statistical cloud-to-cloud variations.Comment: 7 pages, 7 figures, accepted to A&A Letter

    The metallicity and elemental abundance maps of kinematically atypical galaxies for constraining minor merger and accretion histories

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Explaining the internal distribution and motions of stars and gas in galaxies is a key aspect in understanding their evolution. In previous work we identified five well-resolved galaxies with atypical kinematics from a cosmological simulation; two had kinematically distinct cores (KDCs), and three had counter-rotating gas and stars (CRGD). In this paper, we show that (i) the KDC galaxies have flattening of stellar [O/Fe] at large galactocentric radii due to the minor mergers that gave rise to the KDCs, and (ii) the CRGD galaxies have an abrupt transition in the gas metallicity maps, from high metallicity in the centre to very low metallicity further out. These galaxies are embedded in dark matter filaments where there is a ready supply of near-pristine gas to cause this effect. The non-linear increase in gas metallicity is also seen in the radial profiles, but when the metallicity gradients are measured, the difference is buried in the scatter of the relation. We also find that all five galaxies are fairly compact, with small effective radii given their stellar masses. This is because they have not experienced major mergers that kinematically heat the stars, and would have destroyed their unusual kinematics. In order to detect these signatures of minor mergers or accretion, the galaxy scaling relations or radial metallicity profiles are not enough, and it is necessary to obtain the two-dimensional maps with integral field spectroscopy observations.Peer reviewe
    corecore