2,310 research outputs found

    Book review: why walls won’t work: repairing the US-Mexico divide

    Get PDF
    Today, when one thinks of the border separating the United States from Mexico, what typically comes to mind is a mutually unwelcoming zone, with violent, poverty-ridden towns on one side and an increasingly militarized network of barriers and surveillance systems on the other. In Why Walls Won’t Work, Michael Dear explains why this view is problematic and false. Those interested in one way that the discipline of border studies has developed to account for the post 9/11 context will find this book interesting and instructive; Dear’s focus on the physicality of the border Wall itself is most convincing, writes Zalfa Feghali

    Enclosings of Decompositions of Complete Multigraphs in 22-Edge-Connected rr-Factorizations

    Full text link
    A decomposition of a multigraph GG is a partition of its edges into subgraphs G(1),,G(k)G(1), \ldots , G(k). It is called an rr-factorization if every G(i)G(i) is rr-regular and spanning. If GG is a subgraph of HH, a decomposition of GG is said to be enclosed in a decomposition of HH if, for every 1ik1 \leq i \leq k, G(i)G(i) is a subgraph of H(i)H(i). Feghali and Johnson gave necessary and sufficient conditions for a given decomposition of λKn\lambda K_n to be enclosed in some 22-edge-connected rr-factorization of μKm\mu K_{m} for some range of values for the parameters nn, mm, λ\lambda, μ\mu, rr: r=2r=2, μ>λ\mu>\lambda and either m2n1m \geq 2n-1, or m=2n2m=2n-2 and μ=2\mu = 2 and λ=1\lambda=1, or n=3n=3 and m=4m=4. We generalize their result to every r2r \geq 2 and m2n2m \geq 2n - 2. We also give some sufficient conditions for enclosing a given decomposition of λKn\lambda K_n in some 22-edge-connected rr-factorization of μKm\mu K_{m} for every r3r \geq 3 and m=(2C)nm = (2 - C)n, where CC is a constant that depends only on rr, λ\lambda and~μ\mu.Comment: 17 pages; fixed the proof of Theorem 1.4 and other minor change

    Book review: backroads pragmatists: Mexico’s melting pot and civil rights in the United States by Ruben Flores

    Get PDF
    Through deep archival research and ambitious synthesis, Backroads Pragmatists aims to illuminate how nation-building in post-revolutionary Mexico unmistakably influenced the civil rights movement and democratic politics in the United States. Zalfa Feghali is impressed by Flores’ contribution, which convincingly traces the legacy of Mexican state policies as resonating beyond Mexico’s northern border and compelling shows a narrative of friendships and intellectual relationships between social scientists in both the US and Mexico

    Recognizing Graphs Close to Bipartite Graphs with an Application to Colouring Reconfiguration

    Full text link
    We continue research into a well-studied family of problems that ask whether the vertices of a graph can be partitioned into sets AA and~BB, where AA is an independent set and BB induces a graph from some specified graph class G{\cal G}. We let G{\cal G} be the class of kk-degenerate graphs. This problem is known to be polynomial-time solvable if k=0k=0 (bipartite graphs) and NP-complete if k=1k=1 (near-bipartite graphs) even for graphs of maximum degree 44. Yang and Yuan [DM, 2006] showed that the k=1k=1 case is polynomial-time solvable for graphs of maximum degree 33. This also follows from a result of Catlin and Lai [DM, 1995]. We consider graphs of maximum degree k+2k+2 on nn vertices. We show how to find AA and BB in O(n)O(n) time for k=1k=1, and in O(n2)O(n^2) time for k2k\geq 2. Together, these results provide an algorithmic version of a result of Catlin [JCTB, 1979] and also provide an algorithmic version of a generalization of Brook's Theorem, which was proven in a more general way by Borodin, Kostochka and Toft [DM, 2000] and Matamala [JGT, 2007]. Moreover, the two results enable us to complete the complexity classification of an open problem of Feghali et al. [JGT, 2016]: finding a path in the vertex colouring reconfiguration graph between two given \ell-colourings of a graph of maximum degree kk
    corecore