368 research outputs found
Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance
We report a systematic study into the effects of cyano substitution on the electron accepting ability of the common acceptor 4,7-bis(thiophen-2-yl)-2,1,3-benzothiadiazole (DTBT). We describe the synthesis of DTBT monomers with either 0, 1, or 2 cyano groups on the BT unit and their corresponding copolymers with the electron rich donor dithienogermole (DTG). The presence of the cyano group is found to have a strong influence on the optoelectronic properties of the resulting donor–acceptor polymers, with the optical band gap red-shifting by approximately 0.15 eV per cyano substituent. We find that the polymer electron affinity is significantly increased by ∼0.25 eV upon addition of each cyano group, while the ionization potential is less strongly affected, increasing by less than 0.1 eV per cyano substituent. In organic photovoltaic (OPV) devices power conversion efficiencies (PCE) are almost doubled from around 3.5% for the unsubstituted BT polymer to over 6.5% for the monocyano substituted BT polymer. However, the PCE drops to less than 1% for the dicyano substituted BT polymer. These differences are mainly related to differences in the photocurrent, which varies by 1 order of magnitude between the best (1CN) and worst devices (2CN). The origin of this variation in the photocurrent was investigated by studying the charge generation properties of the photoactive polymer–fullerene blends using fluorescence and transient absorption spectroscopic techniques. These measurements revealed that the improved photocurrent of 1CN in comparison to 0CN was due to improved light harvesting properties while maintaining a high exciton dissociation yield. The addition of one cyano group to the BT unit optimized the position of the polymer LUMO level closer to that of the electron acceptor PC71BM, such that the polymer’s light harvesting properties were improved without sacrificing either the exciton dissociation yield or device VOC. We also identify that the drop in performance for the 2CN polymer is caused by very limited yields of electron transfer from the polymer to the fullerene, likely caused by poor orbital energy level alignment with the fullerene acceptor (PC71BM). This work highlights the impact that small changes in chemical structure can have on the optoelectronic and device properties of semiconducting polymer. In particular this work highlights the effect of LUMO–LUMO offset on the excited state dynamics of polymer–fullerene blends
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation
PubMed ID: 2313976
DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains
List of genes down-regulated in both W6nk2 and Zhenong8 after 15Â days exposure to 5Â ÎźM Cd. (DOC 130 kb
A New Fluorescence-Based Method Identifies Protein Phosphatases Regulating Lipid Droplet Metabolism
In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis
ChIP-seq Defined Genome-Wide Map of TGFβ/SMAD4 Targets: Implications with Clinical Outcome of Ovarian Cancer
Deregulation of the transforming growth factor-β (TGFβ) signaling pathway in epithelial ovarian cancer has been reported, but the precise mechanism underlying disrupted TGFβ signaling in the disease remains unclear. We performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate genome-wide screening of TGFβ-induced SMAD4 binding in epithelial ovarian cancer. Following TGFβ stimulation of the A2780 epithelial ovarian cancer cell line, we identified 2,362 SMAD4 binding loci and 318 differentially expressed SMAD4 target genes. Comprehensive examination of SMAD4-bound loci, revealed four distinct binding patterns: 1) Basal; 2) Shift; 3) Stimulated Only; 4) Unstimulated Only. TGFβ stimulated SMAD4-bound loci were primarily classified as either Stimulated only (74%) or Shift (25%), indicating that TGFβ-stimulation alters SMAD4 binding patterns in epithelial ovarian cancer cells. Furthermore, based on gene regulatory network analysis, we determined that the TGFβ-induced, SMAD4-dependent regulatory network was strikingly different in ovarian cancer compared to normal cells. Importantly, the TGFβ/SMAD4 target genes identified in the A2780 epithelial ovarian cancer cell line were predictive of patient survival, based on in silico mining of publically available patient data bases. In conclusion, our data highlight the utility of next generation sequencing technology to identify genome-wide SMAD4 target genes in epithelial ovarian cancer and link aberrant TGFβ/SMAD signaling to ovarian tumorigenesis. Furthermore, the identified SMAD4 binding loci, combined with gene expression profiling and in silico data mining of patient cohorts, may provide a powerful approach to determine potential gene signatures with biological and future translational research in ovarian and other cancers
Single nucleotide polymorphism discovery in elite north american potato germplasm
BACKGROUND: Current breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used. Large-scale sequence datasets generated primarily through Sanger Expressed Sequence Tag projects are available from a limited number of potato cultivars and access to next generation sequencing technologies permits rapid generation of sequence data for additional cultivars. When coupled with the advent of high throughput genotyping methods, an opportunity now exists for potato breeders to incorporate considerably more genotypic data into their decision-making. RESULTS: To identify a large number of Single Nucleotide Polymorphisms (SNPs) in elite potato germplasm, we sequenced normalized cDNA prepared from three commercial potato cultivars: 'Atlantic', 'Premier Russet' and 'Snowden'. For each cultivar, we generated 2 Gb of sequence which was assembled into a representative transcriptome of (~)28-29 Mb for each cultivar. Using the Maq SNP filter that filters read depth, density, and quality, 575,340 SNPs were identified within these three cultivars. In parallel, 2,358 SNPs were identified within existing Sanger sequences for three additional cultivars, 'Bintje', 'Kennebec', and 'Shepody'. Using a stringent set of filters in conjunction with the potato reference genome, we identified 69,011 high confidence SNPs from these six cultivars for use in genotyping with the Infinium platform. Ninety-six of these SNPs were used with a BeadXpress assay to assess allelic diversity in a germplasm panel of 248 lines; 82 of the SNPs proved sufficiently informative for subsequent analyses. Within diverse North American germplasm, the chip processing market class was most distinct, clearly separated from all other market classes. The round white and russet market classes both include fresh market and processing cultivars. Nevertheless, the russet and round white market classes are more distant from each other than processing are from fresh market types within these two groups. CONCLUSIONS: The genotype data generated in this study, albeit limited in number, has revealed distinct relationships among the market classes of potato. The SNPs identified in this study will enable high-throughput genotyping of germplasm and populations, which in turn will enable more efficient marker-assisted breeding efforts in potato
Broadband Linear-Dichroic Photodetector in a Black Phosphorus Vertical p-n Junction
The ability to detect light over a broad spectral range is central for
practical optoelectronic applications, and has been successfully demonstrated
with photodetectors of two-dimensional layered crystals such as graphene and
MoS2. However, polarization sensitivity within such a photodetector remains
elusive. Here we demonstrate a linear-dichroic broadband photodetector with
layered black phosphorus transistors, using the strong intrinsic linear
dichroism arising from the in-plane optical anisotropy with respect to the
atom-buckled direction, which is polarization sensitive over a broad bandwidth
from 400 nm to 3750 nm. Especially, a perpendicular build-in electric field
induced by gating in black phosphorus transistors can spatially separate the
photo-generated electrons and holes in the channel, effectively reducing their
recombination rate, and thus enhancing the efficiency and performance for
linear dichroism photodetection. This provides new functionality using
anisotropic layered black phosphorus, thereby enabling novel optical and
optoelectronic device applications.Comment: 18 pages, 5 figures in Nature Nanotechnology 201
Carotenoids Play a Positive Role in the Degradation of Heterocycles by Sphingobium yanoikuyae
BACKGROUND: Microbial oxidative degradation is a potential way of removing pollutants such as heterocycles from the environment. During this process, reactive oxygen species or other oxidants are inevitably produced, and may cause damage to DNA, proteins, and membranes, thereby decreasing the degradation rate. Carotenoids can serve as membrane-integrated antioxidants, protecting cells from oxidative stress. FINDINGS: Several genes involved in the carotenoid biosynthetic pathway were cloned and characterized from a carbazole-degrading bacterium Sphingobium yanoikuyae XLDN2-5. In addition, a yellow-pigmented carotenoid synthesized by strain XLDN2-5 was identified as zeaxanthin that was synthesized from β-carotene through β-cryptoxanthin. The amounts of zeaxanthin and hydrogen peroxide produced were significantly and simultaneously enhanced during the biodegradation of heterocycles (carbazole < carbazole + benzothiophene < carbazole + dibenzothiophene). These higher production levels were consistent with the transcriptional increase of the gene encoding phytoene desaturase, one of the key enzymes for carotenoid biosynthesis. CONCLUSIONS/SIGNIFICANCE: Sphingobium yanoikuyae XLDN2-5 can enhance the synthesis of zeaxanthin, one of the carotenoids, which may modulate membrane fluidity and defense against intracellular oxidative stress. To our knowledge, this is the first report on the positive role of carotenoids in the biodegradation of heterocycles, while elucidating the carotenoid biosynthetic pathway in the Sphingobium genus
MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells
- …
