28 research outputs found

    Rod-structure classification of gravitational instantons with U(1)xU(1) isometry

    Full text link
    The rod-structure formalism has played an important role in the study of black holes in D=4 and 5 dimensions with RxU(1)^{D-3} isometry. In this paper, we apply this formalism to the study of four-dimensional gravitational instantons with U(1)xU(1) isometry, which could serve as spatial backgrounds for five-dimensional black holes. We first introduce a stronger version of the rod structure with the rod directions appropriately normalised, and show how the regularity conditions can be read off from it. Requiring the absence of conical and orbifold singularities will in general impose periodicity conditions on the coordinates, and we illustrate this by considering known gravitational instantons in this class. Some previous results regarding certain gravitational instantons are clarified in the process. Finally, we show how the rod-structure formalism is able to provide a classification of gravitational instantons, and speculate on the existence of possible new gravitational instantons.Comment: 43 pages, 5 figures, LaTeX; minor changes made and reference added, published versio

    Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime

    Get PDF
    We study the motion of test particles and electromagnetic waves in the Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects associated with the gravitomagnetic monopole moment of the source. In particular, we determine in the linear approximation the contribution of this monopole to the gravitational time delay and the rotation of the plane of the polarization of electromagnetic waves. Moreover, we consider "spherical" orbits of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the modification of the Wilkins orbits due to the presence of the gravitomagnetic monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur

    Boson Stars: Alternatives to primordial black holes?

    Get PDF
    The present surge for the astrophysical relevance of boson stars stems from the speculative possibility that these compact objects could provide a considerable fraction of the non-baryonic part of dark matter within the halo of galaxies. For a very light `universal' axion of effective string models, their total gravitational mass will be in the most likely range of \sim 0.5 M_\odot of MACHOs. According to this framework, gravitational microlensing is indirectly ``weighing" the axion mass, resulting in \sim 10^{-10} eV/c^2. This conclusion is not changing much, if we use a dilaton type self-interaction for the bosons. Moreover, we review their formation, rotation and stability as likely candidates of astrophysical importance.Comment: 14 pages, uses REVTeX, 1 postscript figur

    Pinning Down the Psychosocial Dimensions of AIDS

    No full text

    Stable States of a Scalar Particle in Its Own Gravational Field

    Full text link

    Silica Fillers for Elastomer Reinforcement

    No full text
    corecore