1,897 research outputs found
Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium
Recent experimental developments of high-intensity, short-pulse XUV light
sources are enhancing our ability to study electron-electron correlations. We
perform time-dependent calculations to investigate the so-called "sequential"
regime (photon energy above 54.4 eV) in the two-photon double ionization of
helium. We show that attosecond pulses allow to induce and probe angular and
energy correlations of the emitted electrons. The final momentum distribution
reveals regions dominated by the Wannier ridge break-up scenario and by
post-collision interaction.Comment: 4 pages, 5 figure
The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation
Background: Graft hypertrophy is the most common complication of periosteal autologous chondrocyte implantation (p-ACI).
Purpose: The aim of this prospective study was to analyze the development, the incidence rate, and the persistence of graft hypertrophy after matrix-based autologous chondrocyte implantation (mb-ACI) in the knee joint within a 2-year postoperative course.
Study Design: Case series; Level of evidence, 4.
Methods: Between 2004 and 2007, a total of 41 patients with 44 isolated cartilage defects of the knee were treated with the mb-ACI technique. The mean age of the patients was 35.8 years (standard deviation [SD], 11.3 years), and the mean body mass index was 25.9 (SD, 4.2; range, 19-35.3). The cartilage defects were arthroscopically classified as Outerbridge grades III and IV. The mean area of the cartilage defect measured 6.14 cm2 (SD, 2.3 cm2). Postoperative clinical and magnetic resonance imaging (MRI) examinations were conducted at 3, 6, 12, and 24 months to analyze the incidence and course of the graft.
Results: Graft hypertrophy developed in 25% of the patients treated with mb-ACI within a postoperative course of 1 year; 16% of the patients developed hypertrophy grade 2, and 9% developed hypertrophy grade 1. Graft hypertrophy occurred primarily in the first 12 months and regressed in most cases within 2 years. The International Knee Documentation Committee (IKDC) and visual analog scale (VAS) scores improved during the postoperative follow-up time of 2 years. There was no difference between the clinical results regarding the IKDC and VAS pain scores and the presence of graft hypertrophy.
Conclusion: The mb-ACI technique does not lead to graft hypertrophy requiring treatment as opposed to classic p-ACI. The frequency of occurrence of graft hypertrophy after p-ACI and mb-ACI is comparable. Graft hypertrophy can be considered as a temporary excessive growth of regenerative cartilage tissue rather than a true graft hypertrophy. It is therefore usually not a persistent or systematic complication in the treatment of circumscribed cartilage defects with mb-ACI
Vascular Flora of Hooper Branch Savanna Nature Preserve, Iroquois County, Illinois
INHS Technical Report prepared for Illinois Department of Natural Resources, Division of
Natural Heritag
Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies
ABSTRACT
Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature of carbon substrate fitness tradeoffs, we evolved batch cultures of
Escherichia coli
via serial propagation into tubes alternating between glucose and either xylose, glycerol, or acetate. Genome sequencing of evolved cultures revealed several genetic changes preferentially selected for under dynamic conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent “generalist” strain developed, while in another, two “specialist” subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists and specialists, in one case being completely abolished, while gene expression data distinguished the transcriptional strategies implemented by strains in pursuit of growth optimality. Genome-scale metabolic modeling techniques were then used to help explain the inherent substrate differences giving rise to the observed distinct adaptive strategies. This study gives insight into the population dynamics of adaptation in an alternating environment and into the underlying metabolic and genetic mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with potential industrial bioprocessing applications.
IMPORTANCE
Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving
Escherichia coli
to conditions of frequently switching growth substrate. Characterization of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation to complex environments but also suggests strategies for experimental design to achieve desired evolutionary outcomes.
</jats:p
Dispensability of Escherichia coli's latent pathways
Gene-knockout experiments on single-cell organisms have established that
expression of a substantial fraction of genes is not needed for optimal growth.
This problem acquired a new dimension with the recent discovery that
environmental and genetic perturbations of the bacterium Escherichia coli are
followed by the temporary activation of a large number of latent metabolic
pathways, which suggests the hypothesis that temporarily activated reactions
impact growth and hence facilitate adaptation in the presence of perturbations.
Here we test this hypothesis computationally and find, surprisingly, that the
availability of latent pathways consistently offers no growth advantage, and
tends in fact to inhibit growth after genetic perturbations. This is shown to
be true even for latent pathways with a known function in alternate conditions,
thus extending the significance of this adverse effect beyond apparently
nonessential genes. These findings raise the possibility that latent pathway
activation is in fact derivative of another, potentially suboptimal, adaptive
response
Universal features in sequential and nonsequential two-photon double ionization of helium
We analyze two-photon double ionization of helium in both the nonsequential
and sequential regime. We show that the energy spacing between the two emitted
electrons provides the key parameter that controls both the energy and the
angular distribution and reveals the universal features present in both the
nonsequential and sequential regime. This universality, i.e., independence of
photon energy, is a manifestation of the continuity across the threshold for
sequential double ionization. For all photon energies, the energy distribution
can be described by a universal shape function that contains only the spectral
and temporal information entering second-order time-dependent perturbation
theory. Angular correlations and distributions are found to be more sensitive
to the photon energy. In particular, shake-up interferences have a large effect
on the angular distribution. Energy spectra, angular distributions
parameterized by the anisotropy parameters, and total cross sections presented
in this paper are obtained by fully correlated time-dependent ab initio
calculations.Comment: 12 pages, 8 figure
Documenting of Geologic Field Activities in Real-Time in Four Dimensions: Apollo 17 as a Case Study for Terrestrial Analogues and Future Exploration
During the Apollo exploration of the lunar surface, thousands of still images, 16 mm videos, TV footage, samples, and surface experiments were captured and collected. In addition, observations and descriptions of what was observed was radioed to Mission Control as part of standard communications and subsequently transcribed. The archive of this material represents perhaps the best recorded set of geologic field campaigns and will serve as the example of how to conduct field work on other planetary bodies for decades to come. However, that archive of material exists in disparate locations and formats with varying levels of completeness, making it not easily cross-referenceable. While video and audio exist for the missions, it is not time synchronized, and images taken during the missions are not time or location tagged. Sample data, while robust, is not easily available in a context of where the samples were collected, their descriptions by the astronauts are not connected to them, or the video footage of their collection (if available). A more than five year undertaking to reconstruct and reconcile the Apollo 17 mission archive, from launch through splashdown, has generated an integrated record of the entire mission, resulting in searchable, synchronized image, voice, and video data, with geologic context provided at the time each sample was collected. Through www.apollo17.org the documentation of the field investigation conducted by the Apollo 17 crew is presented in chronologic sequence, with additional context provided by high-resolution Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images and a corresponding digital terrain model (DTM) of the Taurus-Littrow Valley
- …
