1,769 research outputs found
Observation of triply coincident nonlinearities in periodically poled KTiOPO4
We report the simultaneous quasi-phase-matching of all three possible
nonlinearities for propagation along the X axis of periodocally poled (PP)
KTiOPO4 (KTP) for second-harmonic generation of 745 nm pulsed light from 1490nm
subpicosecond pulses in a PPKTP crystal with a 45.65 micrometer poling period.
This confirms the recent Sellmeier fits of KTP by K. Kato and E. Takaoka [Appl.
Opt. 41, 5040 (2002)]. Such coincident nonlinearities are of importance for
realizing compact sources of multipartite continuous-variable entanglement
[Pfister et al., Phys. Rev. A 70, 020302 (2004)] and we propose a new simpler
method for entangling four fields, based on this triple coincidence.Comment: 3 pages, 4 figures, submitted for publicatio
Nonlinear interaction between two heralded single photons
Harnessing nonlinearities strong enough to allow two single photons to
interact with one another is not only a fascinating challenge but is central to
numerous advanced applications in quantum information science. Currently, all
known approaches are extremely challenging although a few have led to
experimental realisations with attenuated classical laser light. This has
included cross-phase modulation with weak classical light in atomic ensembles
and optical fibres, converting incident laser light into a non-classical stream
of photon or Rydberg blockades as well as all-optical switches with attenuated
classical light in various atomic systems. Here we report the observation of a
nonlinear parametric interaction between two true single photons. Single
photons are initially generated by heralding one photon from each of two
independent spontaneous parametric downconversion sources. The two heralded
single photons are subsequently combined in a nonlinear waveguide where they
are converted into a single photon with a higher energy. Our approach
highlights the potential for quantum nonlinear optics with integrated devices,
and as the photons are at telecom wavelengths, it is well adapted to
applications in quantum communication.Comment: 4 pages, 4 figure
A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter
We have demonstrated a high-flux source of polarization-entangled photons
using a type-II phase-matched periodically-poled KTP parametric downconverter
in a collinearly propagating configuration. We have observed quantum
interference between the single-beam downconverted photons with a visibility of
99% and a measured coincidence flux of 300/s/mW of pump. The
Clauser-Horne-Shimony-Holt version of Bell's inequality was violated with a
value of 2.711 +/- 0.017.Comment: 7 pages submitted to Physical Review
Investigating the medium range order in amorphous Ta<sub>2</sub>O<sub>5</sub> coatings
Ion-beam sputtered amorphous heavy metal oxides, such as Ta2O5, are widely used as the high refractive index layer of highly reflective dielectric coatings. Such coatings are used in the ground based Laser Interferometer Gravitational-wave Observatory (LIGO), in which mechanical loss, directly related to Brownian thermal noise, from the coatings forms an important limit to the sensitivity of the LIGO detector. It has previously been shown that heat-treatment and TiO2 doping of amorphous Ta2O5 coatings causes significant changes to the levels of mechanical loss measured and is thought to result from changes in the atomic structure. This work aims to find ways to reduce the levels of mechanical loss in the coatings by understanding the atomic structure properties that are responsible for it, and thus helping to increase the LIGO detector sensitivity. Using a combination of Reduced Density Functions (RDFs) from electron diffraction and Fluctuation Electron Microscopy (FEM), we probe the medium range order (in the 2-3 nm range) of these amorphous coatings
Counter-propagating entangled photons from a waveguide with periodic nonlinearity
The conditions required for spontaneous parametric down-conversion in a
waveguide with periodic nonlinearity in the presence of an unguided pump field
are established. Control of the periodic nonlinearity and the physical
properties of the waveguide permits the quasi-phase matching equations that
describe counter-propagating guided signal and idler beams to be satisfied. We
compare the tuning curves and spectral properties of such counter-propagating
beams to those for co-propagating beams under typical experimental conditions.
We find that the counter-propagating beams exhibit narrow bandwidth permitting
the generation of quantum states that possess discrete-frequency entanglement.
Such states may be useful for experiments in quantum optics and technologies
that benefit from frequency entanglement.Comment: submitted to Phys. Rev.
Generating Entangled Two-Photon States with Coincident Frequencies
It is shown that parametric downconversion, with a short-duration pump pulse
and a long nonlinear crystal that is appropriately phase matched, can produce a
frequency-entangled biphoton state whose individual photons are coincident in
frequency. Quantum interference experiments which distinguish this state from
the familiar time-coincident biphoton state are described.Comment: Revised version (a typo was corrected) as published on PR
Cryogenic mechanical loss of a single-crystalline GaP coating layer for precision measurement applications
The first direct observations of gravitational waves have been made by the Advanced LIGO detectors.
However, the quest to improve the sensitivities of these detectors remains, and epitaxially grown single-crystal
coatings show considerable promise as alternatives to the ion-beam sputtered amorphous mirror
coatings typically used in these detectors and other such precision optical measurements. The mechanical
loss of a 1 μm thick single-crystalline gallium phosphide (GaP) coating, incorporating a buffer layer region
necessary for the growth of high quality epitaxial coatings, has been investigated over a broad range of
frequencies and with fine temperature resolution. It is shown that at 20 K the mechanical loss of GaP is a
factor of 40 less than an undoped tantala film heat-treated to 600 °C and is comparable to the loss of a
multilayer GaP/AlGaP coating. This is shown to translate into possible reductions in coating thermal noise
of a factor of 2 at 120 K and 5 at 20 K over the current best IBS coatings (alternating stacks of silica and
titania-doped tantala). There is also evidence of a thermally activated dissipation process between 50 and
70 K
Temporal Simultons in Optical Parametric Oscillators
We report the first demonstration of a regime of operation in optical parametric oscillators (OPOs), in which the formation of temporal simultons produces stable femtosecond half-harmonic pulses. Simultons are simultaneous bright-dark solitons of a signal field at frequency ω and the pump field at
2ω, which form in a quadratic nonlinear medium. The formation of simultons in an OPO is due to the interplay of nonlinear pulse acceleration with the timing mismatch between the pump repetition period and the cold-cavity round-trip time and is evidenced by sech^2 spectra with broad instantaneous bandwidths when the resonator is detuned to a slightly longer round-trip time than the pump repetition period. We provide a theoretical description of an OPO operating in a regime dominated by these dynamics, observe the distinct features of simulton formation in an experiment, and verify our results with numerical simulations. These results represent a new regime of operation in nonlinear resonators, which can lead to efficient and scalable sources of few-cycle frequency combs at arbitrary wavelengths
Effect of heat treatment on mechanical dissipation in TaO coatings
Thermal noise arising from mechanical dissipation in dielectric reflective
coatings is expected to critically limit the sensitivity of precision
measurement systems such as high-resolution optical spectroscopy, optical
frequency standards and future generations of interferometric gravitational
wave detectors. We present measurements of the effect of post-deposition heat
treatment on the temperature dependence of the mechanical dissipation in
ion-beam sputtered tantalum pentoxide between 11\,K and 300\,K. We find the
temperature dependence of the dissipation is strongly dependent on the
temperature at which the heat treatment was carried out, and we have identified
three dissipation peaks occurring at different heat treatment temperatures. At
temperatures below 200\,K, the magnitude of the loss was found to increase with
higher heat treatment temperatures, indicating that heat treatment is a
significant factor in determining the level of coating thermal noise.Comment: accepted Classical and Quantum Gravity 201
Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion
The ability to transduce non-classical states of light from one wavelength to
another is a requirement for integrating disparate quantum systems that take
advantage of telecommunications-band photons for optical fiber transmission of
quantum information and near-visible, stationary systems for manipulation and
storage. In addition, transducing a single-photon source at 1.3 {\mu}m to
visible wavelengths for detection would be integral to linear optical quantum
computation due to the challenges of detection in the near-infrared. Recently,
transduction at single-photon power levels has been accomplished through
frequency upconversion, but it has yet to be demonstrated for a true
single-photon source. Here, we transduce the triggered single-photon emission
of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection
(internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm
signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a
photon anti-bunched second-order intensity correlation, g^(2)(t), that shows
the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure
- …
