16 research outputs found
Enterovirus infections and type 1 diabetes mellitus: is there any relationship?
Several health organizations have classified diabetes mellitus, a metabolic syndrome, as the epidemic of the century, since it affects millions of people worldwide and is one of the top ten causes of death. Type 1 diabetes is considered to be an autoimmune disease, in which autoaggressive T cells infiltrate the islets of Langerhans in the pancreas, leading to the destruction of insulin producing beta cells. The risk of the disease is modulated by genetic factors, mainly genes coding for human leukocyte antigens (HLA). However, the incidence of this disease has increased significantly during the recent decades, which cannot be explained only by genetic factors. Environmental perturbations have also been associated to the development of diabetes. Among these factors, viral triggers have been implicated; particularly enteroviruses, which have been associated to the induction of the disease. Supporting the hypothesis, numerous lines of evidence coming from mouse models and patients with this type of diabetes have shown the association. The present review aims to provide some understanding of how type 1 diabetes occurs and the possible role of enterovirus in this pathology
Tryptophan released from mother's milk has antioxidant properties
Bioactive factors in human milk (HM) are crucial to the health of newborns, especially preterm infants. These compounds assist in reducing the oxidative stress that may occur as a result of combined exposure to supplemental oxygen and immature physiologic defenses. To identify the components in HM that contribute to its greater resistance to oxidative stress compared with infant formulae, enzymatic hydrolysates of HM were prepared, ultrafiltered, separated, and analyzed for antioxidant potential. The antioxidant activity [μM Trolox equivalent (TE/g)] of nondigested milk, whole digested milk, and derived ultrafiltrates were 80.4 ± 13.3, 159.0 ± 5.6, and 127.4 ± 3.1, respectively. An HPLC fraction denoted as fraction 23 (5274 ± 630 μM TE/g) was obtained and its constituents identified as tryptophan (Trp), peptides HNPI, and PLAPQA. Scavenging activity was not observed for PLAPQA, whereas moderate activity was associated with HNPI (144 ± 10.7 μM TE/g) and very high activity to Trp (7986 ± 468 μM TE/g). Trp addition to HM and two infant formulas significantly increased formulae antioxidant properties. Trp appeared to be a powerful free radical scavenger naturally present in HM. Its antioxidant effects and potential application in the diets of infants, particularly preterm, must be examined further
