101 research outputs found
Homoleptic imidazolate frameworks (3)(infinity)[Sr1-xEux(Im)(2)]-hybrid materials with efficient and tuneable luminescence.
Homoleptic frameworks of the formula 3∞[Sr1−xEux(Im)2] (1) x = 0.01–1.0; Im− = imidazolate anion, C3H3N2−) are hybrid materials that exhibit an intensive green luminescence. Tuning of both emission wavelength and quantum yield is achieved by europium/strontium substitution so that a QE of 80% is reached at a Eu content of 5%. Even 100% pure europium imidazolate still shows 60% absolute quantum efficiency. Substitution of Sr/Eu shows that doping with metal cations can also be utilized for coordination compounds to optimize materials properties. The emission is finely tuneable in the region 495–508 nm via variation of the europium content. The series of frameworks 3∞[Sr1−xEux(Im)2] presents dense MOFs with the highest quantum yields reported for MOFs so far
Simulation of Guided Waves in Cylinders Subject to Arbitrary Boundary Conditions Using the Scaled Boundary Finite Element Method
The scaled boundary finite element method (SBFEM) excels as a tool for numerical analysis at particular problem setups where the analytical solution in the scaling direction can be exploited to improve computational efficiency by reducing the number of required degrees of freedom (DOF). This is especially the case for simulating axisymmetric waveguides in the high-frequency range, allowing a significant decrease of computational costs (both memory and CPU time). Then, only the radial direction in a cylindrical coordinate system is discretized and the axial direction is solved analytically. A full threedimensional formulation is possible via the Fourier transform to include asymmetries. This contribution presents such an axisymmetric formulation, which is extended to allow the definition of circumferential as well as arbitrarily shaped dynamic boundary conditions (BCs). Furthermore, the required number of DOF depends on the frequency content. Hierarchical shape functions allow to dynamically adapt the DOF, further increasing efficiency. It will be shown that the results are in good agreement with standard finite element procedures, while greatly reducing computational time
The lens SW05 J143454.4+522850: a fossil group at redshift 0.6?
Fossil groups are considered the end product of natural galaxy group evolution in which group members sink towards the centre of the gravitational potential due to dynamical friction, merging into a single, massive, and X-ray bright elliptical. Since gravitational lensing depends on the mass of a foreground object, its mass concentration, and distance to the observer, we can expect lensing effects of such fossil groups to be particularly strong. This paper explores the exceptional system J143454.4+522850 (with a lens redshift zL = 0.625). We combine gravitational lensing with stellar population synthesis to separate the total mass of the lens into stars and dark matter. The enclosed mass profiles are contrasted with state-of-the-art galaxy formation simulations, to conclude that SW05 is likely a fossil group with a high stellar to dark matter mass fraction (0.027 ± 0.003) with respect to expectations from abundance matching (0.012 ± 0.004), indicative of a more efficient conversion of gas into stars in fossil groups
A Comparative Pharmacokinetics Study of Orally and Intranasally Administered 8-Nitro-1,3-benzothiazin-4-one (BTZ043) Amorphous Drug Nanoparticles
BTZ043 is an 8-nitro-1,3-benzothiazin-4-one with potency against multidrug-resistant Mycobacterium tuberculosis. Low solubility and hepatic metabolism are linked to poor oral bioavailability. Amorphous drug nanoparticles (ADN) were formulated to improve the bioavailability. Comparative pharmacokinetics of BTZ043 ADN following intranasal (2.5 mg kg) and oral administration (25 mg kg) in Balb/c mice was investigated using oral BTZ043 drug suspensions (neat; 25 mg kg) as a standard-of-care reference. Plasma exposure following oral ADN administration was 8-fold higher than for oral neat BTZ043. Intranasal ADN increased plasma exposure 18-fold compared to oral neat BTZ043 after dose normalization. BTZ043 was detectable in lung lining fluid following ADN administration, but not after oral neat BTZ043 dosing. BTZ043 was cleared faster from the lung and plasma following intranasal administration with a shorter time above the minimum inhibitory concentration (MIC) compared to oral ADN. Since time > MIC is reported to drive activity, oral ADN may represent a promising delivery strategy for BTZ043
A comparative pharmacokinetics study of orally and intranasally administered 8‑Nitro-1,3-benzothiazin-4-one (BTZ043) amorphous drug nanoparticles
BTZ043 is an 8-nitro-1,3-benzothiazin-4-one with potency against multidrug-resistant Mycobacterium tuberculosis. Low solubility and hepatic metabolism are linked to poor oral bioavailability. Amorphous drug nanoparticles (ADN) were formulated to improve the bioavailability. Comparative pharmacokinetics of BTZ043 ADN following intranasal (2.5 mg kg–1) and oral administration (25 mg kg–1) in Balb/c mice was investigated using oral BTZ043 drug suspensions (neat; 25 mg kg–1) as a standard-of-care reference. Plasma exposure following oral ADN administration was 8-fold higher than for oral neat BTZ043. Intranasal ADN increased plasma exposure 18-fold compared to oral neat BTZ043 after dose normalization. BTZ043 was detectable in lung lining fluid following ADN administration, but not after oral neat BTZ043 dosing. BTZ043 was cleared faster from the lung and plasma following intranasal administration with a shorter time above the minimum inhibitory concentration (MIC) compared to oral ADN. Since time > MIC is reported to drive activity, oral ADN may represent a promising delivery strategy for BTZ043
Recommended from our members
Retargeting of UniCAR T cells with an in vivo synthesized target module directed against CD19 positive tumor cells
Recent treatments of leukemias with T cells expressing chimeric antigen receptors (CARs) underline their impressive therapeutic potential but also their risk of severe side effects including cytokine release storms and tumor lysis syndrome. In case of cross-reactivities, CAR T cells may also attack healthy tissues. To overcome these limitations, we previously established a switchable CAR platform technology termed UniCAR. UniCARs are not directed against typical tumor-associated antigens (TAAs) but instead against a unique peptide epitope: Fusion of this peptide epitope to a recombinant antibody domain results in a target module (TM). TMs can cross-link UniCAR T cells with tumor cells and thereby lead to their destruction. So far, we constructed TMs with a short half-life. The fast turnover of such a TM allows to rapidly interrupt the treatment in case severe side effects occur. After elimination of most of the tumor cells, however, longer lasting TMs which have not to be applied via continous infusion would be more convenient for the patient. Here we describe and characterize a TM for retargeting UniCAR T cells to CD19 positive tumor cells. Moreover, we show that the TM can efficiently be produced in vivo from producer cells housed in a sponge-like biomimetic cryogel and, thereby, serving as an in vivo TM factory for an extended retargeting of UniCAR T cells to CD19 positive leukemic cells
Оценка устойчивости системы аварийного водоснабжения на предприятии ООО «ВОДСНАБ»
Целью данной работы, является: разработка комплекса мер по повышению устойчивости функционирования предприятия ООО "ВОДСНАБ" в случае аварии. В ходе выполнения работы был проанализирован уровень развития систем водоснабжения. Были выявлены проблемы связанные с износом оборудования. Был произведен расчет и разработка схемы насосной станции первого подъема.The purpose of this work is: development of a set of measures to improve the sustainability of the operation of the enterprise LLC "VODSNAB" in the event of an accident. In the course of the work, the level of development of water supply systems was analyzed. Problems related to equipment wear were identified. The calculation and development of the scheme of the first lift pumping station was carried out
From Chalcogen Bonding to S–π Interactions in Hybrid Perovskite Photovoltaics
The stability of hybrid organic–inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low‐dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S‐mediated interactions is explored by incorporating benzothiadiazole‐based moieties. The formation of S‐mediated LD structures is demonstrated, including one‐dimensional (1D) and layered two‐dimensional (2D) perovskite phases assembled via chalcogen bonding and S–π interactions, through a combination of techniques, such as single crystal and thin film X‐ray diffraction, as well as solid‐state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S‐mediated LD perovskites. The resulting materials are applied in n‐i‐p and p‐i‐n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics
- …
