2,133 research outputs found
Evaluation of the first automated thyroglobulin assay
The aim of this study was to investigate technical and analytical performance of the first automated thyroglobulin (Tg) assay (DPC-Immulite(R); Diagnostic Products Corporation, Los Angeles, USA). In imprecision studies using several human serum pools ranging from 21 to 58 replicates, a coefficient of variation of 9.0 % was obtained at a mean Tg concentration of 0.84 ng/ml and of 6.1 % at a Tg concentration of 62.1 ng/ml. In a method comparison with a non-automated assay (BRAHMS LUMItest Tg(R), BRAHMS, Berlin, Germany) using 383 sera of 303 patients with thyroid carcinoma, regression analysis according to Passing and Bablock yielded in the following equation: Immulite Tg=1.6 x BRAHMS Tg - 0.1 ng/ml (Pearson's r=0.979). Sera obtained from 59 patients with thyroid carcinoma enabled comparative follow-up studies; in all cases qualitative agreement was found with regard to increase or decrease of serum Tg; in eight cases, however, Tg was detected with the Immulite assay but not with the BRAHMS assay. Further follow-up proved the presence of thyroid tissue in these patients. From these and further methodological data (dilution linearity, interference studies, carry-over study, high-dose hook properties, and short report time) it is concluded that the DPC-Immulite Tg assay meets the requirements of routine diagnostic use
Hyperinsulinaemic hypoglycaemia - a diagnostic challenge. A report of two atypical cases
Objectives: The authors describe 2 atypical cases of patients with hypoglycaemia, suspected for insulinoma.
Methods: The 2 reports are accompanied by a concise review of the literature.
Results: Patient 1 had a distal pancreatectomy performed for suspected insulinoma, and was diagnosed with a glucagonoma and beta-cell hyperplasia (nesidioblastosis). To the authors’s knowledge, co-existing glucagonoma and nesidioblastosis had not been previously reported.
Patient 2 was diagnosed with a benign insulinoma and 5 years later with metastatic disease.
Conclusion: The authors conclude that insulinomas are rare entities which often present a diagnostic and therapeutic challenge. In such cases, patient referral to tertiary multidisciplinary centers is recommended
Fabry Disease and Early Stroke
Fabry disease, an X-linked lysosomal storage disorder, results from deficient activity of the enzyme α-galactosidase A. Affected males with the classic phoenotype have acroparaesthesias, hypohidrosis, and corneal opacities in childhood and develop renal failure, cardiac hypertrophy or strokes in the third to fifth decade of life. Some female heterozygotes are asymptomatic, some as severely affected as males. The natural history of Fabry patients includes transitory cerebral ischaemia and strokes, even in very young persons of both genders. The mechanism is partly due to vascular endothelial accumulation of GL-3. White matter lesions on MRI occur. Both males and females can be safely treated with enzyme replacement; and thus screening for Fabry disease of young stroke populations should be considered. There are, however, no hard data of treatment effect on mortality and morbidity. The analyses of results from ongoing studirs will add to the decision on whether or not to screen young stroke patients for Fabry disease. Finally, stroke prophylactic therapy should be used liberally in patients of both genders with verified Fabry disease. This includes primary prevention such as lifestyle counseling, targeting blood pressure, managing atrial fibrillation, diabetes mellitus, hyperlipidaemia, and ASA
Effects of the Commercial Flame Retardant Mixture DE-71 on Cytokine Production by Human Immune Cells
INTRODUCTION:Although production of polybrominated diphenyl ethers (PBDEs) is now banned, release from existing products will continue for many years. The PBDEs are assumed to be neurotoxic and toxic to endocrine organs at low concentrations. Their effect on the immune system has not been investigated thoroughly. We aimed to investigate the influence of DE-71 on cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with Escherichia Coli lipopolysaccharide (LPS) or phytohaemagglutinin-L (PHA-L). MATERIAL AND METHODS:PBMCs isolated from healthy donors were pre-incubated with DE-71 at various concentrations and subsequently incubated with the monocyte stimulator LPS, or the T-cell activator PHA-L. Interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, IL-17A, and IL-17F were quantified in the supernatants by Luminex kits. RESULTS:At non-cytotoxic concentrations (0.01-10 μg/mL), DE-71 significantly enhanced secretion of IL-1β, IL-6, CXCL8, IL-10, and TNF-α (p<0.001-0.019; n = 6) from LPS-stimulated PBMCs. IFN-γ, TNF-α, IL-17A, and IL-17F (p = <0.001-0.043; n = 6) secretion were enhanced from PHA-L-stimulated PBMCs as well. Secretion of IL-1β, IL-2, IL-10, IL-8 and IL-6 was not significantly affected by DE-71. CONCLUSIONS:We demonstrate an enhancing effect of DE-71 on cytokine production by normal human PBMCs stimulated with LPS or PHA-L ex vivo
Long-term enzyme replacement therapy is associated with reduced proteinuria and preserved proximal tubular function in women with Fabry disease
Background Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene. Deficiency of α-galactosidase A (α-Gal A) causes intracellular accumulations of globotriaosylceramide (GL-3) and related glycosphingolipids in all organs, including the kidney, often leading to end-stage renal failure. In women with Fabry disease, accumulation of GL-3 in the glomerular podocytes and other renal cells induces progressive, proteinuric nephropathy, but not as severe as in men. Enzyme replacement therapy (ERT) with recombinant α-Gal A reduces cellular GL-3 deposits in podocytes and tubular epithelial cells. We have previously shown that α-Gal A is delivered to these cells by different pathways involving different receptors. This study investigated the long-term changes in albuminuria, estimated glomerular filtration rate (eGFR) and urinary markers of both glomerular and tubular dysfunction in women with Fabry disease treated with ERT. Methods A retrospective, single centre, cohort study evaluated the long-term association between ERT, albuminuria and eGFR in 13 women with Fabry disease and mild renal involvement. In particular, we analysed the changes in the proteinuric profile, including the glomerular marker IgG, the tubular markers α1-microglobulin and retinol-binding protein (RBP), and the shared tubular and glomerular markers albumin and transferrin. Results ERT was associated with a significant reduction in albuminuria and a relatively stable eGFR. The decrease in albuminuria was paralleled by a decrease in both glomerular and tubular urine protein markers. Conclusions The data indicate that long-term ERT is associated with a reduction in albuminuria and glomerular and tubular urinary protein markers in women with Fabry disease and mild renal manifestation
Access to
Fabry disease, an X-linked lysosomal storage disorder, results from deficient activity of the enzyme α-galactosidase A. Affected males with the classic phoenotype have acroparaesthesias, hypohidrosis, and corneal opacities in childhood and develop renal failure, cardiac hypertrophy or strokes in the third to fifth decade of life. Some female heterozygotes are asymptomatic, some as severely affected as males. The natural history of Fabry patients includes transitory cerebral ischaemia and strokes, even in very young persons of both genders. The mechanism is partly due to vascular endothelial accumulation of GL-3. White matter lesions on MRI occur. Both males and females can be safely treated with enzyme replacement; and thus screening for Fabry disease of young stroke populations should be considered. There are, however, no hard data of treatment effect on mortality and morbidity. The analyses of results from ongoing studirs will add to the decision on whether or not to screen young stroke patients for Fabry disease. Finally, stroke prophylactic therapy should be used liberally in patients of both genders with verified Fabry disease. This includes primary prevention such as lifestyle counseling, targeting blood pressure, managing atrial fibrillation, diabetes mellitus, hyperlipidaemia, and ASA
Selenium supplementation for patients with Graves' hyperthyroidism (the GRASS trial):Study protocol for a randomized controlled trial
BACKGROUND: Graves’ hyperthyroidism is an autoimmune disease causing hyperfunction of the thyroid gland. The concentration of selenium is high in the thyroid gland and two important groups of enzymes within the thyroid are selenoproteins, that is, they depend on selenium. Selenium may have beneficial effects on autoimmune hypothyroidism and on Graves' orbitopathy, but the effects of selenium on Graves' hyperthyroidism is unknown. We hypothesize that adjuvant selenium may be beneficial in the treatment of Graves' hyperthyroidism. The objective is to investigate if selenium supplementation plus standard treatment with anti-thyroid drugs versus standard treatment with anti-thyroid drugs will lead to a decrease in anti-thyroid drug treatment failure (that is, failure to remain euthyroid, without further treatment, one year after cessation of anti-thyroid drug treatment), faster and longer lasting remission (that is, anti-thyroid drug treatment success), and improved quality of life in patients with Graves’ hyperthyroidism. METHODS AND DESIGN: The trial is an investigator-initiated, randomised, blinded, multicentre clinical trial. Inclusion criteria are: age 18 years or older; diagnosis of active Graves' hyperthyroidism within the last two months; and informed consent. Exclusion criteria are major co-morbidity; previous radioactive iodine treatment; ongoing anti-thyroid drug treatment for more than two months; treatment with immunomodulatory drugs; known allergy towards the components in the selenium and placebo pills; pregnancy or breast-feeding; and intake of selenium supplementation above 70 μg per day. We plan to include 492 participants, randomised (1:1) to two tablets of 100 μg selenium once daily for the 24 to 30 months intervention period versus two identical placebo tablets once daily. The primary outcome is the proportion of participants with anti-thyroid drug treatment failure (see above) at the end of the intervention period (24 to 30 months). Secondary outcomes are: thyroid-specific quality of life during the first year after randomisation; level of thyroid stimulating hormone-receptor antibodies at 18 months after randomisation and at the end of the intervention period (24 to 30 months); hyperthyroid symptoms during the first year after randomisation; eye symptoms during the first year after randomisation, and at the end of the intervention period (24 to 30 months); adverse reactions during the intervention period; and serious adverse events during the intervention period. DISCUSSION: It was of great importance to the initiators of this trial, that the results would be directly applicable to daily clinical practice. Therefore, it was designed as a pragmatic trial: the patients follow their usual treatment at their usual hospitals. In order to still collect high quality data on the clinical course and quality of life, an elaborate trial management system was designed to keep track of patient input, need for trial personnel input and action, and to collect data from medical chart systems. Meticulous follow-up on missing responses to the QoL measurements has been incorporated into the system, to minimise missing quality of life data. Monitoring of adverse reactions and events is achieved by thorough instruction of the participants, surveillance of patient-reported outcomes, and integration with national databases regarding hospitalizations. A very long intervention period was necessary, since patients are not considered in remission until one year after stopping anti-thyroid drugs. Usually, patients are treated for 12 to 18 months with anti-thyroid drugs, yielding a total intervention period of 24 to 30 months. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01611896
- …
