3,091 research outputs found
Trasplante celular y terapia regenerativa con células madre
Uno de los campos de la medicina que más expectativas
ha levantado en los últimos años es la terapia celular con
células madre. El aislamiento de células embrionarias humanas,
la aparente e inesperada potencialidad de las células
madre adultas y el desarrollo de la terapia génica nos
llevar a imaginar un futuro esperanzador para un importante
número de enfermedades actualmente incurables. A
lo largo de las siguientes páginas vamos a tratar de dibujar
el panorama de la investigación con células madre, describiendo
los principales logros en este campo así como algunas
de las preguntas pendientes de responder. A pesar
de las grandes expectativas, es fundamental que mantengamos
un espíritu crítico y realista a la hora de analizar los
avances científicos en esta área
Stem Cells and Cardiac Disease: Where are We Going?
During the last 10 years we have witnessed the development of a new field in research termed Stem Cell Therapy.
Classically, it was considered that cells had a limited division and differentiation ability; however, this dogma was
challenged when new exciting results about cell multi/pluripotency were presented to the scientific community. It was
found that cells from one adult tissue source were able to originate cells of a very different type. The possibility of transplanting
these cells into damaged organs with the aim of substituting sick or dead tissue, triggered many studies to understand
the plasticity of the stem cells and their potential in pathological situations. Nowadays, much more is understood
about stem cells, although of course, many questions, especially about their mechanism of action, still need to be answered.
Their benefit after transplantation has been shown experimentally and even clinically in some cases; however, the
degree of stem cell contribution through their own differentiation into the transplanted tissue, has turned out to be generally
low, and increasing evidence indicates that a trophic effect must play an important role in such a benefit. A better understanding
of the paracrine mechanisms involved could be of great relevance in order to develop new therapies focused
on stimulating endogenous cells. On the other hand, more sophisticated methods for cell transplantation combined with
bio-engineering techniques have been devised in cardiac disease models. In this review we will try to provide a critical
overview of the stem cell studies performed until now and to discuss some of the questions raised about the mechanisms
that are involved in their putative reparative effect in cardiovascular diseases, and their origin
Future Perspectives in the Treatment of Heart Failure: From Cell Transplantation to Cardiac Regeneration
En los últimos años hemos asistido a un interés creciente
por el tratamiento de la insuficiencia cardíaca mediante el
trasplante de células madre. Mientras que los estudios con
células madre de músculo (mioblastos) se iniciaron hace
más de 10 años, la posibilidad de que las células madre de
la médula ósea tengan un enorme potencial de diferenciación
y proliferación ha estimulado la investigación con otros
tipos de células madre. Estos estudios experimentales han
demostrado, en no pocas ocasiones, resultados contradictorios,
lo que ha llevado a posturas enfrentadas en cuanto a
la ética de iniciar estudios clínicos. Creemos que es adecuado
tratar de ofrecer una visión crítica respecto a la utilización
de las células madre en la insuficiencia cardíaca.
Quizá la pregunta más difícil de contestar en este momento
es si la realización de ensayos clínicos está justificada o no
a la luz de los conocimientos actuales, o si por el contrario
debemos adquirir un conocimiento mucho más preciso de
la posible eficacia de este tipo de tratamiento y de los mecanismos
que justifican esta eficacia, antes de siquiera iniciar
los estudios en humanos. En nuestra opinión, hay suficientes
evidencias que justifican el desarrollo de ensayos
clínicos a pesar de que, sin duda, existen muchos interrogantes
que debemos resolver mediante estudios experimentales
en animales
Utilización de células madre para la regeneración miocárdica en la insuficiencia cardíaca
La terapia celular en la reparación miocárdica se vislumbra
como una de las estrategias terapéuticas con
mayor futuro en el tratamiento de la insuficiencia cardíaca.
Numerosos estudios in vitro recientes apoyan la potencialidad
de distintos tipos de células madre de diferenciarse
hacia los tejidos necesarios para regenerar el
tejido miocárdico dañado, mientras que estudios en animales
de experimentación sugieren que células madre
de músculo (mioblastos), médula ósea (progenitores mesenquimales,
endoteliales o hematopoyéticos) e incluso
del propio corazón pueden contribuir in vivo a mejorar la
contractilidad cardíaca. Estos trabajos han conducido a
que diversos grupos hayan iniciado estudios en pacientes
con infarto de miocardio. Sin embargo, la utilización
de la terapia celular en ensayos clínicos no está desprovista
de controversia, fundamentalmente relacionada con
la necesidad de aumentar nuestro conocimiento antes
de pasar a la aplicación clínica de estas estrategias terapéuticas.
Aunque es fundamental aumentar significativamente
el conocimiento de los procesos, no consideramos
irrazonable iniciar ensayos clínicos en los que se
identifiquen preguntas concretas cuya respuesta nos
permita avanzar en esta dirección
Somatic stem cells and the origin of cancer
Most human cancers derive from a single cell targeted
by genetic and epigenetic alterations that initiate
malignant transformation. Progressively, these
early cancer cells give rise to different generations
of daughter cells that accumulate additional mutations,
acting in concert to drive the full neoplastic
phenotype1,2. As we have currently deciphered
many of the gene pathways disrupted in cancer, our
knowledge about the nature of the normal cells
susceptible to transformation upon mutation has
remained more elusive.
Adult stem cells are those that show long-term
replicative potential, together with the capacities of
self-renewal and multi-lineage differentiation. These
stem cell properties are tightly regulated in normal
development, yet their alteration may be a critical
issue for tumorigenesis. This concept has arisen
from the striking degree of similarity noted between
somatic stem cells and cancer cells, including
the fundamental abilities to self-renew and differentiate.
Given these shared attributes, it has been
proposed that cancers are caused by transforming
mutations occurring in tissue-specific stem cells3-9.
This hypothesis has been functionally supported by
the observation that among all cancer cells within a
particular tumor, only a minute cell fraction has the
exclusive potential to regenerate the entire tumor
cell population3,10-13; these cells with stem-like
properties have been termed cancer stem cells.
Cancer stem cells can originate from mutation in
normal somatic stem cells that deregulate their
physiological programs. Alternatively, mutations
may target more committed progenitor cells or
even mature cells, which become reprogrammed to
acquire stem-like functions14,15 In any case, mutated
genes should promote expansion of stem/progenitor
cells, thus increasing their predisposition to
cancer development by expanding self-renewal and
pluripotency over their normal tendency towards
relative quiescency and proper differentiation
Stem Cells to Regenerate Cardiac Tissue in Heart Failure
Myocardial regeneration is one of the most promising
therapeutic strategies for heart failure patients. Many experimental
studies have demonstrated that different types
of stem cell can differentiate into myocardial cells and tissues
necessary for regeneration of the damaged myocardium,
while studies in experimental animals suggest that
muscle (myoblast), bone marrow (mesenchymal, endothelial
or hematopoietic progenitors) and even heart cells
can help to improve heart contractility in vivo. These findings
have led several groups to undertake studies in patients
with myocardial infarction. However, the use of cellular
therapy in clinical trials is not without controversy,
mainly related with the need for better knowledge before
these therapeutic strategies are used in clinical practice.
Although significant enhancement of our knowledge of
the processes involved is fundamental, we do not consider
it unreasonable to initiate clinical trials in which specific
questions are posed, whose answers will allow us to
make further progress
Nuevas estrategias terapéuticas en diabetes mellitus tipo 1
El principal determinante del riesgo de complicaciones
derivadas de la diabetes mellitus tipo 1 se debe a los
altos niveles de glucosa en sangre mantenidos durante
largo tiempo. Para conseguir un beneficio terapéutico en
pacientes con diabetes mellitus es necesario desarrollar
tratamientos que permitan de manera segura, efectiva y
estable mantener la normoglucemia. Lamentablemente,
el tratamiento de la diabetes mellitus tipo 1 mediante el
aporte exógeno de insulina no es capaz de conseguir
niveles estables de glucosa en sangre, de manera que con
frecuencia se producen casos de severa hipoglucemia o
hiperglucemia. Hasta la fecha la única solución para reestablecer
de manera permanente la normoglucemia se
consigue mediante el trasplante de páncreas o de islotes
pancreáticos. Sin embargo, a medida que se incrementa
el número de centros especializados en el trasplante de
islotes, mayor es la necesidad de islotes para su trasplante.
Así pues, el estudio de nuevas fuentes de células
productoras de insulina así como de nuevos tratamientos
que permitan preservar o incluso aumentar la masa de
células beta en los pacientes con diabetes mellitus representa
un objetivo de primera necesidad en este campo.
En este sentido, en la última década ha habido un
avance significativo en el campo de la biología de las
células madre. Sin embargo, la identificación de células
apropiadas para la generación de nuevas células beta,
además del desarrollo de técnicas para la caracterización
de estas células, así como de ensayos y modelos
animales apropiados para probar su capacidad de diferenciación
tanto in vitro como in vivo son de vital importancia
para la puesta en marcha de nuevas estrategias
terapéuticas basadas en la aplicación de las células
madre para el tratamiento de la diabetes mellitus tipo 1
Lack of CpG Island Methylator Phenotype Defines a Clinical Subtype of T-Cell Acute Lymphoblastic Leukemia Associated With Good Prognosis
NALP1 is a transcriptional target for cAMP-response-element-binding protein (CREB) in myeloid leukaemia cells
NALP1 (also called DEFCAP, NAC, CARD7) has been shown
to play a central role in the activation of inflammatory caspases
and processing of pro-IL1β (pro-interleukin-1β). Previous studies
showed that NALP1 is highly expressed in peripheral blood
mononuclear cells. In the present study, we report that expression
of NALP1 is absent from CD34+ haematopoietic blast cells,
and its levels are upregulated upon differentiation of CD34+
cells into granulocytes and to a lesser extent into monocytes.
In peripheral blood cells, the highest levels of NALP1 were
observed in CD3+ (T-lymphocytes), CD15+ (granulocytes) and
CD14+ (monocytes) cell populations. Notably, the expression of
NALP1 was significantly increased in the bone marrow blast
cell population of some patients with acute leukaemia, but not
among tissue samples from thyroid and renal cancer. A search for
consensus sites within the NALP1 promoter revealed a sequence
for CREB (cAMP-response-element-binding protein) that was
required for transcriptional activity. Moreover, treatment of TF1
myeloid leukaemia cells with protein kinase C and protein kinase
A activators induced CREB phosphorylation and upregulated
the mRNA and protein levels of NALP1. Conversely, ectopic
expression of a dominant negative form of CREB in TF1 cells
blocked the transcriptional activity of the NALP1 promoter and
significantly reduced the expression of NALP1. Thus NALP1
is transcriptionally regulated by CREB in myeloid cells, a
mechanism that may contribute to modulate the response of these
cells to pro-inflammatory stimuli
- …
