61 research outputs found
The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone
Osteocytes and their cell processes reside in a large, interconnected network
of voids pervading the mineralized bone matrix of most vertebrates. This
osteocyte lacuno-canalicular network (OLCN) is believed to play important roles
in mechanosensing, mineral homeostasis, and for the mechanical properties of
bone. While the extracellular matrix structure of bone is extensively studied
on ultrastructural and macroscopic scales, there is a lack of quantitative
knowledge on how the cellular network is organized. Using a recently introduced
imaging and quantification approach, we analyze the OLCN in different bone
types from mouse and sheep that exhibit different degrees of structural
organization not only of the cell network but also of the fibrous matrix
deposited by the cells. We define a number of robust, quantitative measures
that are derived from the theory of complex networks. These measures enable us
to gain insights into how efficient the network is organized with regard to
intercellular transport and communication. Our analysis shows that the cell
network in regularly organized, slow-growing bone tissue from sheep is less
connected, but more efficiently organized compared to irregular and
fast-growing bone tissue from mice. On the level of statistical topological
properties (edges per node, edge length and degree distribution), both network
types are indistinguishable, highlighting that despite pronounced differences
at the tissue level, the topological architecture of the osteocyte canalicular
network at the subcellular level may be independent of species and bone type.
Our results suggest a universal mechanism underlying the self-organization of
individual cells into a large, interconnected network during bone formation and
mineralization
Recommended from our members
Abschlussbericht (Sachbericht des Verwendungsnachweises entsprechend Nr. 3.2 der BNBest-BMBF 98)
Datei-Upload durch TI
Substrate Polarization Alters the Jahn-Teller Effect in a Single Molecule
Charge-state transitions of a single Cu-phthalocyanine molecule adsorbed on an insulating layer of NaCl on Cu(111) are probed by means of alternate charging scanning tunneling microscopy. Real-space imaging of the electronic transitions reveals the Jahn-Teller distortion occurring upon formation of the first and second anionic charge states. The experimental findings are rationalized by a theoretical many-body model that highlights the crucial role played by the substrate. The latter enhances and stabilizes the intrinsic Jahn-Teller distortion of the negatively charged molecule hosting a degenerate pair of single-particle frontier orbitals. Consequently, two excess electrons are found to occupy, in the ground state, the same localized orbital, despite a larger Coulomb repulsion than the one for the competing delocalized electronic configuration. Control over the charging sequence by varying the applied bias voltage is also predicted
Influence of magnetic fields on magneto-aerotaxis
The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research
Charge-Induced Structural Changes in a Single Molecule Investigated by Atomic Force Microscopy
Intramolecular structural relaxations occurring upon electron transfer are crucial in determining the rate of redox reactions. Here, we demonstrate that subangstrom structural changes occurring upon single-electron charging can be quantified by means of atomically resolved atomic force microscopy (AFM) for the case of single copper(II)phthalocyanine (CuPc) molecules deposited on an ultrathin NaCl film. Imaging the molecule in distinct charge states (neutral and anionic) reveals characteristic differences in the AFM contrast. In comparison to density functional theory simulations these changes in contrast can be directly related to relaxations of the molecule's geometric structure upon charging. The dominant contribution arises from a nonhomogeneous vertical relaxation of the molecule, caused by a change in the electrostatic interaction with the surface
Computational analysis of dynamic bone structure and processes
Das menschliche Skelett besteht aus einem dynamischen Material welches in der Lage ist zu heilen, sowie sich durch strukturellen Umbau an mechanische Beanspruchung anzupassen. In dieser Arbeit ist die mechanische Regulierung dieser Prozesse untersucht worden. Hierfür ist ein Computermodell, sowie die dreidimensionale Abbildung des Knochens und die Auswertung dieser Bilder benutzt worden. An dem Heilungsprozesses von Knochen sind verschiedene Gewebetypen beteiligt. Dabei hängt die räumliche und zeitliche Anordnung dieser Gewebe von der mechanischen Belastung ab. Ein Computermodell, welches den vollständigen Verlauf der Heilung beschreibt, wurde mit der dokumentierten Gewebeentwicklung eines Tierexperimentes verglichen. Verschiedene Hypothesen, wie die mechanische Stimulation die Bildung verschiedene Gewebe beeinflusst, wurden getestet. Zwar ließen sich durch den Vergleich mit dem Experiment keine der Hypothesen verwerfen, jedoch konnten wir Vorschläge machen, worauf bei zukünftigen Experimenten verstärkt geachtet werden soll. Es wird angenommen dass der Umbauprozesses des Knochens vom dichten Netzwerk der Osteozyten mechanisch reguliert wird. Diese Zellen sind in den Knochen eingebettet und über ein dichtes Netzwerk aus engen Kanälen, den sogenannten Canaliculi, miteinander verbunden. Dieses Netzwerk mittels konfokaler Mikrokopie dreidimensional abgebildet. Spezielle Routinen zur Auswertung der Netzwerkorientierung sowie dessen Dichte wurden entwickelt. Die Hauptorientierung des Netzwerkes entspricht der Richtung in der Knochengewebe aufgebaut wird. Die Orientierung des zu dieser Richtung senkrechten Anteils des Netzwerkes rotiert abhängig von der Position entlang der Aufbaurichtung. Dies verdeutlicht den Zusammenhang zwischen der Netzwerkorientierung und der Vorzugsrichtung des Kollagens, dem faserigen Bestandteils des Knochens. Darüber hinaus zeigt die Auswertung der Daten weitere strukturelle Unterschiede im Netzwerk.Our skeleton is composed of a dynamic material that is capable of healing and of adapting to changing mechanical loads through structural remodeling. In this thesis the mechano-regulation of these dynamic processes are addressed using computer modeling and 3-dimensional imaging and image analysis. During bone healing an intricate pattern of different newly formed tissues around the fracture site evolves in time and is influenced by the mechanical loading. Using a computer model which is describing this temporal-spatial evolution of tissue types for the full time-course of healing, this evolution is compared to the documented evolution of an animal experiment. Different hypotheses were tested how the mechanical stimulation results in the formation of different tissues. While the comparison with the outcome of the animal experiments does not allow to falsify any of the hypotheses, it suggests a different design of future animal experiments. Bone remodeling is thought to be mechano-regulated by the dense network of osteocytes. These osteocytes are embedded in bone and are connected to each other via a network of narrow canaliculi. The 3-dimensional structure of the network was imaged using rhodamine staining and laser scanning confocal microscopy. Image analysis tools were developed to determine the network topology and to analyze its density and orientation. The analysis focused on osteons, the building blocks of cortical bone. Within an osteon we found a large variability of the network density with extensive regions without network. Most of the network is oriented radially towards the center of the osteon, i.e.\ parallel to the direction in which the bone material is deposited. The network perpendicular to this direction twists when moving along the direction of bone deposition. A correlation with the main orientation the fibrous constituent of bone, collagen, was detected. Furthermore indicates our data additional structural changes in the network alignment
COMBINED COMPUTATIONAL AND EXPERIMENTAL STUDY OF THE FULL COURSE OF BONE HEALING IN SHEEP
Determination of the Round Window Niche Anatomy Using Cone Beam Computed Tomography Imaging as Preparatory Work for Individualized Drug-Releasing Implants
Modern therapy of inner ear disorders is increasingly shifting to local drug delivery using a growing number of pharmaceuticals. Access to the inner ear is usually made via the round window membrane (RWM), located in the bony round window niche (RWN). We hypothesize that the individual shape and size of the RWN have to be taken into account for safe reliable and controlled drug delivery. Therefore, we investigated the anatomy and its variations. Cone beam computed tomography (CBCT) images of 50 patients were analyzed. Based on the reconstructed 3D volumes, individual anatomies of the RWN, RWM, and bony overhang were determined by segmentation using 3D SlicerTM with a custom build plug-in. A large individual anatomical variability of the RWN with a mean volume of 4.54 mm3 (min 2.28 mm3, max 6.64 mm3) was measured. The area of the RWM ranged from 1.30 to 4.39 mm2 (mean: 2.93 mm2). The bony overhang had a mean length of 0.56 mm (min 0.04 mm, max 1.24 mm) and the shape was individually very different. Our data suggest that there is a potential for individually designed and additively manufactured RWN implants due to large differences in the volume and shape of the RWN.</jats:p
Direct identification and determination of conformational response in adsorbed individual non-planar molecular species using non-contact atomic force microscopy
In recent years atomic force microscopy (AFM) at highest resolution was widely applied to mostly planar molecules, while its application toward exploring species with structural flexibility and a distinct 3D character remains a challenge. Herein, the scope of noncontact AFM is widened by investigating subtle conformational differences occurring in the well-studied reference systems 2H-TPP and Cu-TPP on Cu(111). Different saddle shape conformations of both species can be recognized in conventional constant-height AFM images. To unambiguously identify the behavior of specific molecular moieties, we extend data acquisition to distances that are inaccessible with constant height measurements by introducing vertical imaging, that is, AFM mapping in a plane perpendicular to the sample surface. Making use of this novel technique the vertical displacement of the central Cu atom upon tip-induced conformational switching of Cu-TPP is quantified. Further, for 2H-TPP two drastically different geometries are observed, which are systematically characterized. Our results underscore the importance of structural flexibility in adsorbed molecules with large conformational variability and, consequently, the objective to characterize their geometry at the single-molecule level in real space
- …
