440 research outputs found

    Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System

    Get PDF
    Rapid detection of local and regional earthquakes and issuance of fast alerts for impending shaking is considered beneficial to save lives, reduce losses, and shorten recovery times after destructive events (Allen et al., 2009). Over the last two decades, several countries have built operational earthquake early warning (EEW) systems, including Japan (Hoshiba et al., 2008), Mexico (Espinosa-Aranda et al., 1995), Romania (Mărmureanu et al., 2011), Turkey (Erdik et al., 2003), Taiwan (Hsiao et al., 2011), and China (Peng et al., 2011). Other countries, such as the United States (Böse, Allen, et al., 2013), Italy (Satriano et al., 2011), and Switzerland (Behr et al., 2015), are currently developing systems or evaluating algorithms in their seismic real-time networks

    Fabrication and Response of High Concentration SIMPLE Superheated Droplet Detectors with Different Liquids

    Full text link
    The combined measurement of dark matter interactions with different superheated liquids has recently been suggested as a cross-correlation technique in identifying WIMP candidates. We describe the fabrication of high concentration superheated droplet detectors based on the light nuclei liquids C3F8, C4F8, C4F10 and CCl2F2, and investigation of their irradiation response with respect to C2ClF5. The results are discussed in terms of the basic physics of superheated liquid response to particle interactions, as well as the necessary detector qualifications for application in dark matter search investigations. The possibility of heavier nuclei SDDs is explored using the light nuclei results as a basis, with CF3I provided as an example.Comment: 39 pages, 26 figures; accepted Astroparticle Physic

    FinDer v.2: Improved real-time ground-motion predictions for M2–M9 with seismic finite-source characterization

    Get PDF
    Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (≤M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 ≤ M ≤ 5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5

    A CF3I-based SDD Prototype for Spin-independent Dark Matter Searches

    Full text link
    The application of Superheated Droplet Detectors (SDDs) to dark matter searches has so far been confined to the light nuclei refrigerants C2ClF5 and C4F10 (SIMPLE and PICASSO, respectively), with a principle sensitivity to spin-dependent interactions. Given the competitive results of these devices, as a result of their intrinsic insensitivity to backgrounds, we have developed a prototype trifluoroiodomethane (CF3I)-loaded SDD with increased sensitivity to spin-independent interactions as well. A low (0.102 kgd) exposure test operation of two high concentration, 1 liter devices is described, and the results compared with leading experiments in both spin-dependent and -independent sectors. Although competitive in both sectors when the difference in exposures is accounted for, a problem with fracturing of the detector gel must be addressed before significantly larger exposures can be envisioned.Comment: revised and updated; accepted Astrop. Phy

    Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock

    Get PDF
    Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such astemperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pretreatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in thetransesterification reaction for the production of biodiesel. (C) 2011 Elsevier B.V. All rights reserved

    First Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a_p| < 0.32 for M_W = 50 GeV/c2 on the spin-dependent sector of weakly interacting massive particle-nucleus interactions with a 50% reduction in the previously allowed region of the phase space formerly defined by XENON, KIMS and PICASSO. In the spin-independent sector, a limit of 2.3x10-5 pb at M_W = 45 GeV/c2 is obtained.Comment: 4 pages, 4 figures; PRL-accepted version with corrected SI contour (Fig. 4

    What can(not) be measured with ton-scale dark matter direct detection experiments

    Full text link
    Direct searches for dark matter have prompted in recent years a great deal of excitement within the astroparticle physics community, but the compatibility between signal claims and null results of different experiments is far from being a settled issue. In this context, we study here the prospects for constraining the dark matter parameter space with the next generation of ton-scale detectors. Using realistic experimental capabilities for a wide range of targets (including fluorine, sodium, argon, germanium, iodine and xenon), the role of target complementarity is analysed in detail while including the impact of astrophysical uncertainties in a self-consistent manner. We show explicitly that a multi-target signal in future direct detection facilities can determine the sign of the ratio of scalar couplings fn/fpf_n/f_p, but not its scale. This implies that the scalar-proton cross-section is left essentially unconstrained if the assumption fpfnf_p\sim f_n is relaxed. Instead, we find that both the axial-proton cross-section and the ratio of axial couplings an/apa_n/a_p can be measured with fair accuracy if multi-ton instruments using sodium and iodine will eventually come online. Moreover, it turns out that future direct detection data can easily discriminate between elastic and inelastic scatterings. Finally, we argue that, with weak assumptions regarding the WIMP couplings and the astrophysics, only the dark matter mass and the inelastic parameter (i.e. mass splitting) may be inferred from the recoil spectra -- specifically, we anticipate an accuracy of tens of GeV (tens of keV) in the measurement of the dark matter mass (inelastic parameter).Comment: 31 pages, 7 figures, 7 table

    Keck Interferometer nuller update

    Get PDF
    The Keck Interferometer combines the two 10 m Keck telescopes as a long baseline interferometer, funded by NASA, as a joint development among the Jet Propulsion Laboratory, the W. M. Keck Observatory, and the Michelson Science Center. Since 2004, it has offered an H- and K-band fringe visibility mode through the Keck TAC process. Recently this mode has been upgraded with the addition of a grism for higher spectral resolution. The 10 um nulling mode, for which first nulling data were collected in 2005, completed the bulk of its engineering development in 2007. At the end of 2007, three teams were chosen in response to a nuller key science call to perform a survey of nearby stars for exozodiacal dust. This key science observation program began in Feb. 2008. Under NSF funding, Keck Observatory is leading development of ASTRA, a project to add dual-star capability for high sensitivity observations and dual-star astrometry. We review recent activity at the Keck Interferometer, with an emphasis on the nuller development

    Final Analysis and Results of the Phase II SIMPLE Dark Matter Search

    Full text link
    We report the final results of the Phase II SIMPLE measurements, comprising two run stages of 15 superheated droplet detectors each, the second stage including an improved neutron shielding. The analyses includes a refined signal analysis, and revised nucleation efficiency based on reanalysis of previously-reported monochromatic neutron irradiations. The combined results yield a contour minimum of \sigma_{p} = 4.2 x 10^-3 pb at 35 GeV/c^2 on the spin-dependent sector of WIMP-proton interactions, the most restrictive to date from a direct search experiment and overlapping for the first time results previously obtained only indirectly. In the spin-independent sector, a minimum of 3.6 x 10^-6 pb at 35 GeV/c^2 is achieved, with the exclusion contour challenging the recent CoGeNT region of current interest.Comment: revised, PRL-accepted version with slightly weakened limit contour

    Non-relativistic effective theory of dark matter direct detection

    Full text link
    Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.Comment: 35 pages, 3 figures, Appendix C.3 revised, acknowledgments and references adde
    corecore