1,893 research outputs found
Laser phase modulation approaches towards ensemble quantum computing
Selective control of decoherence is demonstrated for a multilevel system by
generalizing the instantaneous phase of any chirped pulse as individual terms
of a Taylor series expansion. In the case of a simple two-level system, all odd
terms in the series lead to population inversion while the even terms lead to
self-induced transparency. These results also hold for multiphoton transitions
that do not have any lower-order photon resonance or any intermediate virtual
state dynamics within the laser pulse-width. Such results form the basis of a
robustly implementable CNOT gate.Comment: 10 pages, 4 figures, PRL (accepted
Picosecond excitation of jet-cooled hydrogen-bonded systems: Dispersed fluorescence and time-resolved studies of methyl salicylatea
Long progressions involving frequency intervals of 180 cm^(−1) are observed in the fluoresence of MS for 3327.5 Å excitation. (AIP
Purely rotational coherence effect and time-resolved sub-Doppler spectroscopy of large molecules. I. Theoretical
In this and the accompanying paper we present a theoretical treatment and experimental study, respectively, of the phenomenon termed purely rotational coherence. This phenomenon has been demonstrated to be useful as a time domain means by which to obtain high resolution spectroscopic information on excited state rotational levels of large molecules [Felker et al., J. Phys. Chem. 90, 724 (1986); Baskin et al., J. Chem. Phys. 84, 4708 (1986)]. Here, the manifestations in temporally resolved, polarization-analyzed fluorescence of coherently prepared rotational levels in samples of isolated symmetric and asymmetric top molecules are considered. These manifestations, for reasonably large molecules at rotational temperatures characteristic of jet-cooled samples, take the form of polarization-dependent transients and recurrences with temporal widths of the order of tens of picoseconds or less. The transients, which arise from the thermal averaging of many single molecule coherences, are examined with respect to their dependences on molecular parameters (rotational constants, transition dipole directions) and experimental parameters (polarization directions and temperature). A physical picture of rotational coherence as a reflection of the time-dependent orientation of molecules in the sample is developed. And, the influence of rotational coherence in experiments designed to probe intramolecular energy flow is discussed. In the accompanying paper, we present experimental results for jet-cooled t-stilbene and anthracene. For t-stilbene we determine rotational constants for vibrational levels in the S1 electronic state (from the recurrences) and we monitor the trends in rotational coherence vs vibrational coherence as the total energy in the molecule increases
Observation of intracavity absorption of molecules in supersonic beams
Intracavity absorption studies of DMT and I2 are reported at rotational and vibrational temperatures of <0.1 K and 16 K, respectively
Performance and loads data from a hover test of a full-scale XV-15 rotor
A hover test of a full-scale XV-15 rotor was conducted at the Outdoor Aerodynamic Research Facility at Ames Research Center. The primary objective of the test was to obtain accurate measurements of the hover performance of the original, metal-blade XV-15 rotor system. Data were acquired for rotor tip Mach numbers ranging from 0.60 to 0.73. This report presents data on rotor performance, rotor wake downwash velocities, and rotor loads
Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing
A hover test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 foot wind tunnel at Ames Research Center. The principal objective of the test was to measure the surface pressures and total download on a large scale V-22 wing in hover. The test configuration consisted of a single rotor and semispan wing on independent balance systems. A large image plane was used to represent the aircraft plane of symmetry. Wing flap angles ranging from 45 to 90 degrees were examined. Data were acquired for both directions of the rotor rotation relative to the wing. Steady and unsteady wing surface pressures, total wing forces, and rotor performance data are presented for all of the configurations that were tested
Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator
Numerous experimental and theoretical studies have established that
intramolecular vibrational energy redistribution (IVR) in isolated molecules
has a heirarchical tier structure. The tier structure implies strong
correlations between the energy level motions of a quantum system and its
intensity-weighted spectrum. A measure, which explicitly accounts for this
correaltion, was first introduced by one of us as a sensitive probe of phase
space localization. It correlates eigenlevel velocities with the overlap
intensities between the eigenstates and some localized state of interest. A
semiclassical theory for the correlation is developed for systems that are
classically integrable and complements earlier work focusing exclusively on the
chaotic case. Application to a model two dimensional effective spectroscopic
Hamiltonian shows that the correlation measure can provide information about
the terms in the molecular Hamiltonian which play an important role in an
energy range of interest and the character of the dynamics. Moreover, the
correlation function is capable of highlighting relevant phase space structures
including the local resonance features associated with a specific bright state.
In addition to being ideally suited for multidimensional systems with a large
density of states, the measure can also be used to gain insights into the phase
space transport and localization. It is argued that the overlap intensity-level
velocity correlation function provides a novel way of studying vibrational
energy redistribution in isolated molecules. The correlation function is
ideally suited to analyzing the parametric spectra of molecules in external
fields.Comment: 16 pages, 13 figures (low resolution
Localization of Two-dimensional Electron Gas in LaAlO3/SrTiO3 Heterostructures
We report strong localization of 2D electron gas in LaAlO3 / SrTiO3 epitaxial
thin-film heterostructures grown on (LaAlO3)0.3-(Sr2AlTaO3)0.7 substrates by
using pulsed laser deposition with in-situ reflection high-energy electron
diffraction. Using longitudinal and transverse magnetotransport measurements,
we have determined that disorder at the interface influences the conduction
behavior, and that increasing the carrier concentration by growing at lower
oxygen partial pressure changes the conduction from strongly localized at low
carrier concentration to metallic at higher carrier concentration, with
indications of weak localization. We interpret this behavior in terms of a
changing occupation of Ti 3d bands near the interface, each with a different
spatial extent and susceptibility to localization by disorder, and differences
in carrier confinement due to misfit strain and point defects.Comment: 12 pages, 4 figure
Sobre la ocurrencia del cretáceo superior marino en Coihaique , Provincia de Aisén
Using
the CCSD(T) model, we evaluated the intermolecular potential
energy surfaces of the He–, Ne–, and Ar–phosgene
complexes. We considered a representative number of intermolecular
geometries for which we calculated the corresponding interaction energies
with the augmented (He complex) and double augmented (Ne and Ar complexes)
correlation-consistent polarized valence triple-ζ basis sets
extended with a set of 3s3p2d1f1g midbond functions. These basis sets
were selected after systematic basis set studies carried out at geometries
close to those of the surface minima. The He–, Ne–,
and Ar–phosgene surfaces were found to have absolute minima
of −72.1, −140.4, and −326.6 cm<sup>–1</sup> at distances between the rare-gas atom and the phosgene center of
mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials
were further used in the evaluation of rovibrational states and the
rotational constants of the complexes, providing valuable results
for future experimental investigations. Comparing our results to those
previously available for other phosgene complexes, we suggest that
the results for Cl<sub>2</sub>–phosgene should be revised
High-Precision Entropy Values for Spanning Trees in Lattices
Shrock and Wu have given numerical values for the exponential growth rate of
the number of spanning trees in Euclidean lattices. We give a new technique for
numerical evaluation that gives much more precise values, together with
rigorous bounds on the accuracy. In particular, the new values resolve one of
their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed
slightly. 2nd revision corrects first displayed equatio
- …
