1,893 research outputs found

    Laser phase modulation approaches towards ensemble quantum computing

    Full text link
    Selective control of decoherence is demonstrated for a multilevel system by generalizing the instantaneous phase of any chirped pulse as individual terms of a Taylor series expansion. In the case of a simple two-level system, all odd terms in the series lead to population inversion while the even terms lead to self-induced transparency. These results also hold for multiphoton transitions that do not have any lower-order photon resonance or any intermediate virtual state dynamics within the laser pulse-width. Such results form the basis of a robustly implementable CNOT gate.Comment: 10 pages, 4 figures, PRL (accepted

    Picosecond excitation of jet-cooled hydrogen-bonded systems: Dispersed fluorescence and time-resolved studies of methyl salicylatea

    Get PDF
    Long progressions involving frequency intervals of 180 cm^(−1) are observed in the fluoresence of MS for 3327.5 Å excitation. (AIP

    Purely rotational coherence effect and time-resolved sub-Doppler spectroscopy of large molecules. I. Theoretical

    Get PDF
    In this and the accompanying paper we present a theoretical treatment and experimental study, respectively, of the phenomenon termed purely rotational coherence. This phenomenon has been demonstrated to be useful as a time domain means by which to obtain high resolution spectroscopic information on excited state rotational levels of large molecules [Felker et al., J. Phys. Chem. 90, 724 (1986); Baskin et al., J. Chem. Phys. 84, 4708 (1986)]. Here, the manifestations in temporally resolved, polarization-analyzed fluorescence of coherently prepared rotational levels in samples of isolated symmetric and asymmetric top molecules are considered. These manifestations, for reasonably large molecules at rotational temperatures characteristic of jet-cooled samples, take the form of polarization-dependent transients and recurrences with temporal widths of the order of tens of picoseconds or less. The transients, which arise from the thermal averaging of many single molecule coherences, are examined with respect to their dependences on molecular parameters (rotational constants, transition dipole directions) and experimental parameters (polarization directions and temperature). A physical picture of rotational coherence as a reflection of the time-dependent orientation of molecules in the sample is developed. And, the influence of rotational coherence in experiments designed to probe intramolecular energy flow is discussed. In the accompanying paper, we present experimental results for jet-cooled t-stilbene and anthracene. For t-stilbene we determine rotational constants for vibrational levels in the S1 electronic state (from the recurrences) and we monitor the trends in rotational coherence vs vibrational coherence as the total energy in the molecule increases

    Observation of intracavity absorption of molecules in supersonic beams

    Get PDF
    Intracavity absorption studies of DMT and I2 are reported at rotational and vibrational temperatures of <0.1 K and 16 K, respectively

    Performance and loads data from a hover test of a full-scale XV-15 rotor

    Get PDF
    A hover test of a full-scale XV-15 rotor was conducted at the Outdoor Aerodynamic Research Facility at Ames Research Center. The primary objective of the test was to obtain accurate measurements of the hover performance of the original, metal-blade XV-15 rotor system. Data were acquired for rotor tip Mach numbers ranging from 0.60 to 0.73. This report presents data on rotor performance, rotor wake downwash velocities, and rotor loads

    Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing

    Get PDF
    A hover test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 foot wind tunnel at Ames Research Center. The principal objective of the test was to measure the surface pressures and total download on a large scale V-22 wing in hover. The test configuration consisted of a single rotor and semispan wing on independent balance systems. A large image plane was used to represent the aircraft plane of symmetry. Wing flap angles ranging from 45 to 90 degrees were examined. Data were acquired for both directions of the rotor rotation relative to the wing. Steady and unsteady wing surface pressures, total wing forces, and rotor performance data are presented for all of the configurations that were tested

    Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator

    Full text link
    Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.Comment: 16 pages, 13 figures (low resolution

    Localization of Two-dimensional Electron Gas in LaAlO3/SrTiO3 Heterostructures

    Full text link
    We report strong localization of 2D electron gas in LaAlO3 / SrTiO3 epitaxial thin-film heterostructures grown on (LaAlO3)0.3-(Sr2AlTaO3)0.7 substrates by using pulsed laser deposition with in-situ reflection high-energy electron diffraction. Using longitudinal and transverse magnetotransport measurements, we have determined that disorder at the interface influences the conduction behavior, and that increasing the carrier concentration by growing at lower oxygen partial pressure changes the conduction from strongly localized at low carrier concentration to metallic at higher carrier concentration, with indications of weak localization. We interpret this behavior in terms of a changing occupation of Ti 3d bands near the interface, each with a different spatial extent and susceptibility to localization by disorder, and differences in carrier confinement due to misfit strain and point defects.Comment: 12 pages, 4 figure

    Sobre la ocurrencia del cretáceo superior marino en Coihaique , Provincia de Aisén

    Get PDF
    Using the CCSD­(T) model, we evaluated the intermolecular potential energy surfaces of the He–, Ne–, and Ar–phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double augmented (Ne and Ar complexes) correlation-consistent polarized valence triple-ζ basis sets extended with a set of 3s3p2d1f1g midbond functions. These basis sets were selected after systematic basis set studies carried out at geometries close to those of the surface minima. The He–, Ne–, and Ar–phosgene surfaces were found to have absolute minima of −72.1, −140.4, and −326.6 cm<sup>–1</sup> at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials were further used in the evaluation of rovibrational states and the rotational constants of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl<sub>2</sub>–phosgene should be revised

    High-Precision Entropy Values for Spanning Trees in Lattices

    Full text link
    Shrock and Wu have given numerical values for the exponential growth rate of the number of spanning trees in Euclidean lattices. We give a new technique for numerical evaluation that gives much more precise values, together with rigorous bounds on the accuracy. In particular, the new values resolve one of their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed slightly. 2nd revision corrects first displayed equatio
    corecore