553 research outputs found
Molecular outflows in the young open cluster IC348
We present a wide-field survey of the young open cluster IC348 for molecular
H2 outflows. Outflow activity is only found at its south-western limit, where a
new subcluster of embedded sources is in an early phase of its formation. If
the IC348 cluster had been built up by such subclusters forming at different
times, this could explain the large age-spread that Herbig (1998) found for the
IC348 member stars. In addition to several compact groups of H2 knots, our
survey reveals a large north-south oriented outflow, and we identify the newly
discovered far-infrared and mm-object IC348MMS as its source. New deep images
in the 1-0 S(1) line of molecular hydrogen trace the HH211 jet and counterjet
as highly-collimated chains of knots, resembling the interferometric CO and SiO
jets. This jet system appears rotated counter-clockwise by about 3 degrees with
respect to the prominent H2 bow shocks. Furthermore, we resolve HH211-mm as a
double point-like source in the mm-continuum.Comment: 10 pages, 9 figures, accepted for publication in Ap
Relativistic expansion of a magnetized fluid
We study semi-analytical time-dependent solutions of the relativistic
magnetohydrodynamic (MHD) equations for the fields and the fluid emerging from
a spherical source. We assume uniform expansion of the field and the fluid and
a polytropic relation between the density and the pressure of the fluid. The
expansion velocity is small near the base but approaches the speed of light at
the light sphere where the flux terminates. We find self-consistent solutions
for the density and the magnetic flux. The details of the solution depend on
the ratio of the toroidal and the poloidal magnetic field, the ratio of the
energy carried by the fluid and the electromagnetic field and the maximum
velocity it reaches.Comment: 17 pages, 6 figures, accepted by Geophysical and Astrophysical Fluid
Dynamic
Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?
Jets and outflows from young stellar objects are proposed candidates to drive
supersonic turbulence in molecular clouds. Here, we present the results from
multi-dimensional jet simulations where we investigate in detail the energy and
momentum deposition from jets into their surrounding environment and quantify
the character of the excited turbulence with velocity probability density
functions. Our study include jet--clump interaction, transient jets, and
magnetised jets. We find that collimated supersonic jets do not excite
supersonic motions far from the vicinity of the jet. Supersonic fluctuations
are damped quickly and do not spread into the parent cloud. Instead subsonic,
non-compressional modes occupy most of the excited volume. This is a generic
feature which can not be fully circumvented by overdense jets or magnetic
fields. Nevertheless, jets are able to leave strong imprints in their cloud
structure and can disrupt dense clumps. Our results question the ability of
collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution
figures at:
http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd
The Propagation of Magneto-Centrifugally Launched Jets: I
We present simulations of the propagation of magnetized jets. This work
differs from previous studies in that the cross-sectional distributions of the
jets's state variables are derived from analytical models for
magneto-centrifugal launching. The source is a magnetized rotator whose
properties are specfied as boundary conditions. The jets in these simulations
are considerably more complex than the ``top-hat''constant density etc.
profiles used in previous work. We find that density and magnetic field
stratification (with radius) in the jet leads to new behavior including the
separation of an inner jet core from a low density collar. We find this {\it
jet within a jet} structure, along with the magnetic stresses, leads to
propagation behaviors not observed in previous simulation studies. Our
methodology allows us to compare MHD jets from different types of sources whose
properties could ultimately be derived from the behavior of the propagating
jets.Comment: 42 pages, accepted by the Ap
Structure and Stability of Keplerian MHD Jets
MHD jet equilibria that depend on source properties are obtained using a
simplified model for stationary, axisymmetric and rotating magnetized outflows.
The present rotation laws are more complex than previously considered and
include a Keplerian disc. The ensuing jets have a dense, current-carrying
central core surrounded by an outer collar with a return current. The
intermediate part of the jet is almost current-free and is magnetically
dominated. Most of the momentum is located around the axis in the dense core
and this region is likely to dominate the dynamics of the jet. We address the
linear stability and the non-linear development of instabilities for our models
using both analytical and 2.5-D numerical simulation's. The instabilities seen
in the simulations develop with a wavelength and growth time that are well
matched by the stability analysis. The modes explored in this work may provide
a natural explanation for knots observed in astrophysical jets.Comment: 35 pages, accepted by the Ap
One-dimensional collision carts computer model and its design ideas for productive experiential learning
We develop an Easy Java Simulation (EJS) model for students to experience the
physics of idealized one-dimensional collision carts. The physics model is
described and simulated by both continuous dynamics and discrete transition
during collision. In the field of designing computer simulations, we discuss
briefly three pedagogical considerations such as 1) consistent simulation world
view with pen paper representation, 2) data table, scientific graphs and
symbolic mathematical representations for ease of data collection and multiple
representational visualizations and 3) game for simple concept testing that can
further support learning. We also suggest using physical world setup to be
augmented complimentary with simulation while highlighting three advantages of
real collision carts equipment like tacit 3D experience, random errors in
measurement and conceptual significance of conservation of momentum applied to
just before and after collision. General feedback from the students has been
relatively positive, and we hope teachers will find the simulation useful in
their own classes. 2015 Resources added:
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3),
301 (2012); ISSN 0031-912
VLBI imaging of a flare in the Crab Nebula: More than just a spot
We report on very long baseline interferometry (VLBI) observations of the
radio emission from the inner region of the Crab Nebula, made at 1.6 GHz and 5
GHz after a recent high-energy flare in this object. The 5 GHz data have
provided only upper limits of 0.4 milli-Jansky (mJy) on the flux density of the
pulsar and 0.4 mJy/beam on the brightness of the putative flaring region. The
1.6 GHz data have enabled imaging the inner regions of the nebula on scales of
up to ~40". The emission from the inner "wisps" is detected for the first time
with VLBI observations. A likely radio counterpart (designated "C1") of the
putative flaring region observed with Chandra and HST is detected in the radio
image, with an estimated flux density of \,mJy and a size of
0.2-0.6". Another compact feature ("C2") is also detected in the VLBI image
closer to the pulsar, with an estimated flux density of 0.4 +- 0.2 mJy and a
size smaller than 0{\farcs}2. Combined with the broad-band SED of the flare,
the radio properties of C1 yield a lower limit of ~0.5 mG for the magnetic
field and a total minimum energy of 1.2*10^41 ergs vested in the flare
(corresponding to using about 0.2% of the pulsar spin-down power). The 1.6 GHz
observations provide upper limits for the brightness (0.2 mJy/beam) and total
flux density (0.4 mJy) of the optical Knot 1 located at 0.6" from the pulsar.
The absolute position of the Crab pulsar is determined, and an estimate of the
pulsar proper motion is obtained.Comment: Astronomy & Astrophysics; accepted; 10 pages, 8 figure
"Propeller" Regime of Disk Accretion to Rapidly Rotating Stars
We present results of axisymmetic magnetohydrodynamic simulations of the
interaction of a rapidly-rotating, magnetized star with an accretion disk. The
disk is considered to have a finite viscosity and magnetic diffusivity. The
main parameters of the system are the star's angular velocity and magnetic
moment, and the disk's viscosity, diffusivity. We focus on the "propeller"
regime where the inner radius of the disk is larger than the corotation radius.
Two types of magnetohydrodynamic flows have been found as a result of
simulations: "weak" and "strong" propellers. The strong propeller is
characterized by a powerful disk wind and a collimated magnetically dominated
outflow or jet from the star. The weak propeller have only weak outflows. We
investigated the time-averaged characteristics of the interaction between the
main elements of the system, the star, the disk, the wind from the disk, and
the jet. Rates of exchange of mass and angular momentum between the elements of
the system are derived as a function of the main parameters. The propeller
mechanism may be responsible for the fast spinning-down of the classical T
Tauri stars in the initial stages of their evolution, and for the spinning-down
of accreting millisecond pulsars.Comment: 18 pages, 16 figures, ApJ (accepted), added references, corrected
typos; see animation at
http://astrosun2.astro.cornell.edu/us-rus/disk_prop.ht
Probing the last scattering surface through the recent and future CMB observations
We have constrained the extended (delayed and accelerated) models of hydrogen
recombination, by investigating associated changes of the position and the
width of the last scattering surface. Using the recent CMB and SDSS data, we
find that the recent data constraints favor the accelerated recombination
model, though the other models (standard, delayed recombination) are not ruled
out at 1- confidence level. If the accelerated recombination had
actually occurred in our early Universe, baryonic clustering on small-scales is
likely to be the cause of it. By comparing the ionization history of baryonic
cloud models with that of the best-fit accelerated recombination model, we find
that some portion of our early Universe has baryonic underdensity. We have made
the forecast on the PLANCK data constraint, which shows that we will be able to
rule out the standard or delayed recombination models, if the recombination in
our early Universe had proceeded with or lower, and
residual foregrounds and systematic effects are negligible.Comment: v2: matched with the accepted version (conclusions unchanged
- …
