3,522 research outputs found

    RORS: Enhanced Rule-based OWL Reasoning on Spark

    Full text link
    The rule-based OWL reasoning is to compute the deductive closure of an ontology by applying RDF/RDFS and OWL entailment rules. The performance of the rule-based OWL reasoning is often sensitive to the rule execution order. In this paper, we present an approach to enhancing the performance of the rule-based OWL reasoning on Spark based on a locally optimal executable strategy. Firstly, we divide all rules (27 in total) into four main classes, namely, SPO rules (5 rules), type rules (7 rules), sameAs rules (7 rules), and schema rules (8 rules) since, as we investigated, those triples corresponding to the first three classes of rules are overwhelming (e.g., over 99% in the LUBM dataset) in our practical world. Secondly, based on the interdependence among those entailment rules in each class, we pick out an optimal rule executable order of each class and then combine them into a new rule execution order of all rules. Finally, we implement the new rule execution order on Spark in a prototype called RORS. The experimental results show that the running time of RORS is improved by about 30% as compared to Kim & Park's algorithm (2015) using the LUBM200 (27.6 million triples).Comment: 12 page

    On the Construction of Radio Environment Maps for Cognitive Radio Networks

    Full text link
    The Radio Environment Map (REM) provides an effective approach to Dynamic Spectrum Access (DSA) in Cognitive Radio Networks (CRNs). Previous results on REM construction show that there exists a tradeoff between the number of measurements (sensors) and REM accuracy. In this paper, we analyze this tradeoff and determine that the REM error is a decreasing and convex function of the number of measurements (sensors). The concept of geographic entropy is introduced to quantify this relationship. And the influence of sensor deployment on REM accuracy is examined using information theory techniques. The results obtained in this paper are applicable not only for the REM, but also for wireless sensor network deployment.Comment: 6 pages, 7 figures, IEEE WCNC conferenc

    Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter

    Full text link
    A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper
    corecore