59,248 research outputs found

    Estimating the mass of the hidden charm 1+(1+)1^+(1^{+}) tetraquark state via QCD sum rules

    Full text link
    By using QCD sum rules, the mass of the hidden charm tetraquark [cu][cˉdˉ][cu][\bar{c}\bar{d}] state with IG(JP)=1+(1+)I^{G} (J^{P}) = 1^+ (1^{+}) (HCTV) is estimated, which presumably will turn out to be the newly observed charmonium-like resonance Zc+(3900)Z_c^+(3900). In the calculation, contributions up to dimension eight in the operator product expansion(OPE) are taken into account. We find m1+c=(3912153+306)MeVm_{1^+}^c = (3912^{+306}_{-153}) \, \text{MeV}, which is consistent, within the errors, with the experimental observation of Zc+(3900)Z_c^+(3900). Extending to the b-quark sector, m1+b=(10561163+395)MeVm_{1^+}^b = (10561^{+395}_{-163}) \,\text{MeV} is obtained. The calculational result strongly supports the tetraquark picture for the "exotic" states of Zc+(3900)Z_c^+(3900) and Zb+(10610)Z_b^+(10610).Comment: 13 pages,3 figures, 1 table, version to appear in EPJ

    Molecular states with hidden charm and strange in QCD Sum Rules

    Full text link
    This work uses the QCD Sum Rules to study the masses of the DsDˉsD_s \bar{D}_s^* and DsDˉsD_s^* \bar{D}_s^* molecular states with quantum numbers JPC=1+J^{PC} = 1^{+-}. Interpolating currents with definite C-parity are employed, and the contributions up to dimension eight in the Operator Product Expansion (OPE) are taken into account. The results indicate that two hidden strange charmonium-like states may exist in the energy ranges of 3.834.133.83 \sim 4.13 GeV and 4.224.544.22 \sim 4.54 GeV, respectively. The hidden strange charmonium-like states predicted in this work may be accessible in future experiments, e.g. BESIII, BelleII and SuperB. Possible decay modes, which may be useful in further research, are predicted.Comment: 15 pages, 6 figures, 2 tables, to appear in EP

    Cylindrical Lenses Based Spectral Domain Low-Coherence Interferometry for On-line Surface Inspection

    Get PDF
    This paper presents a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques because it uses cylindrical lenses as the objective lens in a Michelson interferometric configuration to enable the measurement of long profiles. The adjustable profile length in our experimental setup, determined by the NA of the illuminating system and the aperture of cylindrical lenses, is up to 10 mm. To simulate real-time surface inspection, large-scale 3D surface measurement was carried out by translating the tested sample during the measurement procedure. Two step height surfaces were measured and the captured interferograms were analysed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer

    Directed flow of transported and non-transported protons in Au+Au collisions from UrQMD model

    Full text link
    The directed flow of inclusive, transported and non-transported (including produced) protons, as well as antiprotons, has been studied in the framework of Ultra-Relativistic Quantum Molecular Dynamics approach (UrQMD model) for Au+Au collisions at\surdsNN =7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV. The rapidity, centrality and energy dependence of directed flow for various proton groups are presented. It is found that the integrated directed flow decreases monotonically as a function of collision energy for\surdsNN =11.5 GeV and beyond. However, the sign-change of directed flow of inclusive protons, seen in experimental data as a function of centrality and collision energy, can be explained by the competing effect of directed flow between transported and non-transported protons. Similarly the difference in directed flow between protons and antiprotons can be explained. Our study offers a conventional explanation on the cause of the v1 sign-change other than the antiflow component of protons alone which is argued to be linked to a phase transition.Comment: 5 pages,5 figure

    On the Properties of Gromov Matrices and their Applications in Network Inference

    Full text link
    The spanning tree heuristic is a commonly adopted procedure in network inference and estimation. It allows one to generalize an inference method developed for trees, which is usually based on a statistically rigorous approach, to a heuristic procedure for general graphs by (usually randomly) choosing a spanning tree in the graph to apply the approach developed for trees. However, there are an intractable number of spanning trees in a dense graph. In this paper, we represent a weighted tree with a matrix, which we call a Gromov matrix. We propose a method that constructs a family of Gromov matrices using convex combinations, which can be used for inference and estimation instead of a randomly selected spanning tree. This procedure increases the size of the candidate set and hence enhances the performance of the classical spanning tree heuristic. On the other hand, our new scheme is based on simple algebraic constructions using matrices, and hence is still computationally tractable. We discuss some applications on network inference and estimation to demonstrate the usefulness of the proposed method

    Estimating Infection Sources in Networks Using Partial Timestamps

    Full text link
    We study the problem of identifying infection sources in a network based on the network topology, and a subset of infection timestamps. In the case of a single infection source in a tree network, we derive the maximum likelihood estimator of the source and the unknown diffusion parameters. We then introduce a new heuristic involving an optimization over a parametrized family of Gromov matrices to develop a single source estimation algorithm for general graphs. Compared with the breadth-first search tree heuristic commonly adopted in the literature, simulations demonstrate that our approach achieves better estimation accuracy than several other benchmark algorithms, even though these require more information like the diffusion parameters. We next develop a multiple sources estimation algorithm for general graphs, which first partitions the graph into source candidate clusters, and then applies our single source estimation algorithm to each cluster. We show that if the graph is a tree, then each source candidate cluster contains at least one source. Simulations using synthetic and real networks, and experiments using real-world data suggest that our proposed algorithms are able to estimate the true infection source(s) to within a small number of hops with a small portion of the infection timestamps being observed.Comment: 15 pages, 15 figures, accepted by IEEE Transactions on Information Forensics and Securit
    corecore