7,751 research outputs found

    Explicit Interaction Model towards Text Classification

    Full text link
    Text classification is one of the fundamental tasks in natural language processing. Recently, deep neural networks have achieved promising performance in the text classification task compared to shallow models. Despite of the significance of deep models, they ignore the fine-grained (matching signals between words and classes) classification clues since their classifications mainly rely on the text-level representations. To address this problem, we introduce the interaction mechanism to incorporate word-level matching signals into the text classification task. In particular, we design a novel framework, EXplicit interAction Model (dubbed as EXAM), equipped with the interaction mechanism. We justified the proposed approach on several benchmark datasets including both multi-label and multi-class text classification tasks. Extensive experimental results demonstrate the superiority of the proposed method. As a byproduct, we have released the codes and parameter settings to facilitate other researches.Comment: 8 page

    Fast and accurate simulations of transmission-line metamaterials using transmission-matrix method

    Get PDF
    Recently, two-dimensional (2D) periodically L and C loaded transmission-line (TL) networks have been applied to represent metamaterials. The commercial Agilent's Advanced Design System (ADS) is a commonly-used tool to simulate the TL metamaterials. However, it takes a lot of time to set up the TL network and perform numerical simulations using ADS, making the metamaterial analysis inefficient, especially for large-scale TL networks. In this paper, we propose transmission-matrix method (TMM) to simulate and analyze the TL-network metamaterials efficiently. Compared to the ADS commercial software, TMM provides nearly the same simulation results for the same networks. However, the model-process and simulation time has been greatly reduced. The proposed TMM can serve as an efficient tool to study the TL-network metamaterials.Comment: 15 pages, 13 figure
    corecore