3,404 research outputs found
Scalable Bell inequalities for multiqubit systems
Based on Clauser-Horner-Shimony-Holt inequality, we show a fruitful method to
exploit Bell inequalities for multipartite qubit systems. These Bell
inequalities are designed with a simpler architecture tailored to experimental
demonstration. Under the optimal setting we derive a set of compact Mermin-type
inequalities and discuss quantum violations for generalized
Greenberger-Horne-Zeilinger (GGHZ) states. Also, we reveal relationship between
quantum nonlocality and four-partite entanglement for four-qubit GGHZ states.Comment: 4 pages, 1 figur
Bidirectional outflows as evidence of magnetic reconnection leading to a solar microflare
Magnetic reconnection is a rapid energy release process that is believed to
be responsible for flares on the Sun and stars. Nevertheless, such
flare-related reconnection is mostly detected to occur in the corona, while
there have been few studies concerning the reconnection in the chromosphere or
photosphere. Here we present both spectroscopic and imaging observations of
magnetic reconnection in the chromosphere leading to a microflare. During the
flare peak time, chromospheric line profiles show significant
blueshifted/redshifted components on the two sides of the flaring site,
corresponding to upflows and downflows with velocities of (70--80) km
s, comparable with the local Alfv\'{e}n speed as expected by the
reconnection in the chromosphere. The three-dimensional nonlinear force-free
field configuration further discloses twisted field lines (a flux rope) at a
low altitude, cospatial with the dark threads in He I 10830 \r{A} images. The
instability of the flux rope may initiate the flare-related reconnection. These
observations provide clear evidence of magnetic reconnection in the
chromosphere and show the similar mechanisms of a microflare to those of major
flares.Comment: 16 pages, 5 figures, accepted for publication in ApJ
Silencing of two insulin receptor genes disrupts nymph-adult transition of alate brown citrus aphid
Insulin receptors play key roles in growth, development, and polymorphism in insects. Here, we report two insulin receptor genes (AcInR1 and AcInR2) from the brown citrus aphid, Aphis (Toxoptera) citricidus. Transcriptional analyses showed that AcInR1 increased during the nymph-adult transition in alate aphids, while AcInR2 had the highest expression level in second instar nymphs. AcInR1 is important in aphid development from fourth instar nymphs to adults as verified by dsRNA feeding mediated RNAi. The silencing of AcInR1 or/and AcInR2 produced a variety of phenotypes including adults with normal wings, malformed wings, under-developed wings, and aphids failing to develop beyond the nymphal stages. Silencing of AcInR1 or AcInR2 alone, and co-silencing of both genes, resulted in 73% or 60%, and 87% of aphids with problems in the transition from nymph to normal adult. The co-silencing of AcInR1 and AcInR2 resulted in 62% dead nymphs, but no mortality occurred by silencing of AcInR1 or AcInR2 alone. Phenotypes of adults in the dsInR1 and dsInR2 were similar. The results demonstrate that AcInR1 and AcInR2 are essential for successful nymph-adult transition in alate aphids and show that RNAi methods may be useful for the management of this pest
- …
