27,574 research outputs found
One-step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity
The diamond nitrogen-vacancy (NV) center is an excellent candidate for
quantum information processing, whereas entangling separate NV centers is still
of great experimental challenge. We propose an one-step conditional phase flip
with three NV centers coupled to a whispering-gallery mode cavity by virtue of
the Raman transition and smart qubit encoding. As decoherence is much
suppressed, our scheme could work for more qubits. The experimental feasibility
is justified.Comment: 3 pages, 2 figures, Accepted by Appl. Phys. Let
A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure
We investigate the interacting dark energy models by using the diagnostics of
statefinder hierarchy and growth rate of structure. We wish to explore the
deviations from CDM and to differentiate possible degeneracies in the
interacting dark energy models with the geometrical and structure growth
diagnostics. We consider two interacting forms for the models, i.e., and , with being the dimensionless
coupling parameter. Our focus is the ICDM model that is a
one-parameter extension to CDM by considering a direct coupling
between the vacuum energy () and cold dark matter (CDM), with the only
additional parameter . But we begin with a more general case by
considering the ICDM model in which dark energy has a constant
(equation-of-state parameter). For calculating the growth rate of structure, we
employ the "parametrized post-Friedmann" theoretical framework for interacting
dark energy to numerically obtain the values for the models. We
show that in both geometrical and structural diagnostics the impact of is
much stronger than that of in the ICDM model. We thus wish to have a
closer look at the ICDM model by combining the geometrical and
structural diagnostics. We find that the evolutionary trajectories in the
-- plane exhibit distinctive features and the departures
from CDM could be well evaluated, theoretically, indicating that the
composite null diagnostic is a promising tool for
investigating the interacting dark energy models.Comment: 17 pages, 4 figures; accepted for publication in JCA
Band-gap modification of defective carbon nanotubes under a transverse electric field
[[abstract]]Ab initio calculations show that the band-gap modulation of semiconducting carbon nanotubes with mono-vacancy defect can be easily achieved by applying a transverse electric field. We found that the band structures of the defective carbon nanotubes vary quite differently from that of the perfect nanotube, and strongly depend on the applied direction of the transverse electric field. A mechanism is proposed to explain the variation of the band gap, and potential applications of these phenomena are discussed.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]US
- …
