2,440 research outputs found
Carbon capture in the cement industry: technologies, progress, and retrofitting
Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4–5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be “carbon-capture ready” for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money
Phase diagram of Janus Particles
We deeply investigate a simple model representative of the recently
synthesized Janus particles, i.e. colloidal spherical particles whose surface
is divided into two areas of different chemical composition. When the two
surfaces are solvophilic and solvophobic, these particles constitute the
simplest example of surfactants. The phase diagram includes a colloidal-poor
(gas) colloidal-rich (liquid) de-mixing region, which is progressively
suppressed by the insurgence of micelles, providing the first model where
micellization and phase-separation are simultaneously observed. The coexistence
curve is found to be negatively sloped in the temperature-pressure plane,
suggesting that Janus particles can provide a colloidal system with anomalous
thermodynamic behavior.Comment: 5 pages, 5 figures, Phys. Rev. Lett. in pres
Change in the magnetic structure of (Bi,Sm)FeO3 thin films at the morphotropic phase boundary probed by neutron diffraction
We report on the evolution of the magnetic structure of BiFeO3 thin films
grown on SrTiO3 substrates as a function of Sm doping. We determined the
magnetic structure using neutron diffraction. We found that as Sm increases,
the magnetic structure evolves from a cycloid to a G-type antiferromagnet at
the morphotropic phase boundary, where there is a large piezoelectric response
due to an electric-field induced structural transition. The occurrence of the
magnetic structural transition at the morphotropic phase boundary offers
another route towards room temperature multiferroic devices
Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event
Abstract We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1-MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s-100s-keV energy seed population, followed by enhancements to the \u3e1-MeV population and eventually leading to enhancements in the multi-MeV electron population these observations provide the clearest evidence to date of the timing and nature of the radial transport of a 100s keV electron seed population into the heart of the outer belt and subsequent local acceleration of those electrons to higher radiation belt energies. Key Points Quantification of phase space density gradients inside geostationary orbit Clear differences between the source of low energy and relativistic electrons Clear observations of how the acceleration process evolves in energy
Topological Sector Fluctuations and Curie Law Crossover in Spin Ice
At low temperatures, a spin ice enters a Coulomb phase - a state with
algebraic correlations and topologically constrained spin configurations. In
Ho2Ti2O7, we have observed experimentally that this process is accompanied by a
non-standard temperature evolution of the wave vector dependent magnetic
susceptibility, as measured by neutron scattering. Analytical and numerical
approaches reveal signatures of a crossover between two Curie laws, one
characterizing the high temperature paramagnetic regime, and the other the low
temperature topologically constrained regime, which we call the spin liquid
Curie law. The theory is shown to be in excellent agreement with neutron
scattering experiments. On a more general footing, i) the existence of two
Curie laws appears to be a general property of the emergent gauge field for a
classical spin liquid, and ii) sheds light on the experimental difficulty of
measuring a precise Curie-Weiss temperature in frustrated materials; iii) the
mapping between gauge and spin degrees of freedom means that the susceptibility
at finite wave vector can be used as a local probe of fluctuations among
topological sectors.Comment: 10 pages, 5 figure
Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis
BACKGROUND AND AIMS: The MDR1 gene encodes P-glycoprotein 170, an efflux transporter that is highly expressed in intestinal epithelial cells. The MDR1 exonic single nucleotide polymorphisms (SNPs) C3435T and G2677T have been shown to correlate with activity/expression of P-glycoprotein 170.METHODS: This was a case-control analysis of MDR1 C3435T and G2677T SNPs in a large well-characterized Scottish white cohort (335 with ulcerative colitis [UC], 268 with Crohn's disease [CD], and 370 healthy controls). We conducted 2-locus haplotype and detailed univariate and multivariate genotypic-phenotypic analyses.RESULTS: The MDR1 3435 TT genotype (34.6% vs 26.5%; P = .04; odds ratio [OR], 1.60; 95% confidence interval [95% CI], 1.04-2.44) and T-allelic frequencies (58.2% vs 52.8%; P = .02; OR, 1.28; 95% CI, 1.03-1.58) were significantly higher in patients with UC compared with controls. No association was seen with CD. The association was strongest with extensive UC (TT genotype: 42.4% vs 26.5%; P = .003; OR, 2.64; 95% CI, 1.34-4.99; and T allele: 63.9% vs 52.8%; P = .009; OR, 1.70; 95% CI, 1.24-2.29), and this was also confirmed on multivariate analysis ( P = .007). The G2677T SNP was not associated with UC or CD. These 2 SNPs lie in linkage disequilibrium in our population (D', .8-.9; r 2 , .7-.8). Two-locus haplotypes showed both positive (3435T/G2677 haplotype: P = .03; OR, 1.44) and negative (C3435/2677T haplotype: P = .002; OR, .35) associations with UC. Homozygotes for the haplotype 3435T/G2677 were significantly increased in UC ( P = .017; OR, 8.88; 95% CI, 1.10-71.45).CONCLUSIONS: Allelic variations of the MDR1 gene determine disease extent as well as susceptibility to UC in the Scottish population. The present data strongly implicate the C3435T SNP, although the 2-locus haplotype data underline the need for further detailed haplotypic studies.</p
Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming
The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud
In January 1997 a large fleet of NASA and US military satellites provided the most complete observations to date of the changes in \u3e2 MeV electrons during a geomagnetic storm. Observations at geosynchronous orbit revealed a somewhat unusual two-peaked enhancement in relativistic electron fluxes [ Reeves et al., 1998]. In the heart of the radiation belts at L ≈ 4, however, there was a single enhancement followed by a gradual decay. Radial profiles from the POLAR and GPS satellites revealed three distinct phases. (1) In the acceleration phase electron fluxes increased simultaneously at L ≈ 4–6. (2) During the passage of the cloud the radiation belts were shifted radially outward and then relaxed earthward. (3) For several days after the passage of the cloud the radial gradient of the fluxes flattened, increasing the fluxes at higher L-shells. These observations provide evidence that the acceleration of relativistic electrons takes place within the radiation belts and is rapid. Both magnetospheric compression and radial diffusion can cause a redistribution of electron fluxes within the magnetosphere that make the event profiles appear quite different when viewed at different L-shells
Reply to comment on “MeV magnetosheath ions energized at the bow shock” by J. Chen, TA Fritz, and RB Sheldon
- …
