312 research outputs found

    The effect of the NAO on sea level and on mass changes in the Mediterranean Sea

    Get PDF
    Sea level in the Mediterranean Sea over the period 1993–2011 is studied on the basis of altimetry, temperature, and salinity data and gravity measurements from Gravity Recovery and Climate Experiment (GRACE) (2002–2010). An observed increase in sea level corresponds to a linear sea level trend of 3.0 ± 0.5 mm/yr dominated by the increase in the oceanic mass in the basin. The increase in sea level does not, however, take place linearly but over two 2–3 year periods, each contributing 2–3 cm of sea level. Variability in the basin sea level and its mass component is dominated by the winter North Atlantic Oscillation (NAO). The NAO influence on sea level is primarily linked with atmospheric pressure changes and local wind field changes. However, neither the inverse barometer correction nor a barotropic sea level model forced by atmospheric pressure and wind can remove fully the NAO influence on the basin sea level. Thus, a third contributing mechanism linked with the NAO is suggested. During winter 2010, a low NAO index caused a basin sea level increase of 12 cm which was almost wholly due to mass changes and is evidenced by GRACE. About 8 cm of the observed sea level change can be accounted for as due to atmospheric pressure and wind changes. The residual 4 cm of sea level change is caused by the newly identified contribution. The physical mechanisms that may be responsible for this additional contribution are discussed

    An Improved and Homogeneous Altimeter Sea Level Record from the ESA Climate Change Initiative

    Get PDF
    Sea Level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea Level has been listed as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed at providing an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV has been made available to users (Ablain et al., 2015). During the second phase (2014-2017), improved altimeter standards have been selected to produce new sea level products (called SL_cci v2.0) based on 9 altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in details in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in-situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared to the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties at different spatial and temporal scales. However, there is still room for improvement since the uncertainties remain larger than the GCOS requirements. Perspectives for subsequent evolutions are also discussed

    Steric and mass-induced sea level variations in the Mediterranean Sea revisited

    Get PDF
    The total sea level variation (SLV) is the combination of steric and mass␣induced SLV, whose exact shares are key to understanding the oceanic response to climate system changes. Total SLV can be observed by radar altimetry satellites such as TOPEX/POSEIDON and Jason 1/2. The steric SLV can be computed through temperature and salinity profiles from in situ measurements or from ocean general circulation models (OGCM), which can assimilate the said observations. The mass-induced SLV can be estimated from its time-variable gravity (TVG) signals. We revisit this problem in the Mediterranean Sea estimating the observed, steric, and mass-induced SLV, for the latter we analyze the latest TVG data set from the GRACE (Gravity Recovery and Climate Experiment) satellite mission launched in 2002, which is 3.5 times longer than in previous studies, with the application of a two-stage anisotropic filter to reduce the noise in high-degree and -order spherical harmonic coefficients. We confirm that the intra-annual total SLV are only produced by water mass changes, a fact explained in the literature as a result of the wind field around the Gibraltar Strait. The steric SLV estimated from the residual of “altimetry minus GRACE” agrees in phase with that estimated from OGCMs and in situ measurements, although showing a higher amplitude. The net water fluxes through both the straits of Gibraltar and Sicily have also been estimated accordingly.This work was elaborated during the stay of the first author at the National Central University of Taiwan, thanks to a grant from the Generalitat Valenciana, Spain. Jean-Paul Boy is currently visiting NASA Goddard Space Flight Center, with a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-221753). This work was partly funded by two Spanish projects from MICIN, ESP2006-11357, and AYA2009-07981 and one from Generalitat Valenciana (ACOMP2009/031)

    Satellite geodesy for sea level and climate change

    Get PDF
    This habilitation thesis presents the findings of the sea level change studies conducted at the Institute of Geodesy of the Technischen Universität Darmstadt betweeen 2001 and 2013. Sea level is an important indicator of climate change. It has been traditionally measured by coastal tide gauges and by satellite altimetry since 1993. Tide gauge measurements indicate a coastal average sea level rise of 1-2 millimeters per year over the 20th century. Over the last two decades the average sea level rise increased to 3.3±0.7 millimeters per year, consistently measured by tide gauges and satellite altimetry. The 2013 Intergovernmental Panel on ClimateChange (IPCC AR5) predicts a global mean rise of 50 ± 20 cm by 2100 for a medium warming scenario for the interval 2081-2100. Sea level rise is not uniform and some regions will be more affected than others. It can possibly exacerbate the effects of other factors, such as flooding and ground subsidence. Because of its potential impact on coastal regions, rising sea level is one of the major threatsof climate warming. Changes in each component of the climate system, ocean, land and ice sheets, affects sea level. The two primary contributors of sea level rise, thermal expansion due to ocean warming and melting of continental glaciers and ice sheets, have been identifiedbut large uncertainties remain. Locally non-climatic components, as subsidence, can causerelative sea level rise much larger than the global average mean sea level rise. The global and highly accurate analysis of sea level variations is made possible by spacebasedtechniques. Their main innovation is the use of the same accurate and global reference frame ensuring long-term, precise monitoring and integration in a Global Geodetic ObservingSystem, which is crucial for many practical applications. This thesis focuses on the use of geodetic techniques. Its aim is a comprehensive analysis of the regional sea level variability and of its causes with particular attention to the coastalzone. The three main scientific objectives are: improvement of multi-mission satellite altimetry records, quantification of global and regional sea level change and attribution of sea level rise. Firstly the altimeter data from different missions are unified, improved in the coastal zoneand validated with in-situ and model data. Secondly global and regional estimations of sea level variability from altimetry and tide gauge data are made. The third part of the work is dedicated to the analysis of the reason for sea level change. Here satellite altimetry andgravity missions data are combined with model data to detect the causes of this variation. The analysis includes the separation of mass and volume sea level change and the closing of the water budget. This work shows the challenges of merging satellite data of different types for the understanding of physical processes in sea basins. It also deals with the challenges of new satellite altimetry missions in the coastal zone, where altimetry provides a consistent link to tide gauge stations co-located with Global Navigation Satellite System observations. It finally discusses the importance of highly accurate sea level variability and trends for modeling coastal processes and for long-term predictions

    Retrieval of eddy dynamics from SMOS sea surface salinity measurements in the Algerian Basin (Mediterranean Sea)

    Get PDF
    8 pages, 4 figures, supporting information https://dx.doi.org/10.1002/2016GL069595The circulation in the Algerian Basin is characterized by the presence of fresh-core eddies that propagate along the coast or at distances between 100 and 200 km from the coast. Enhancements in the processing of the Soil Moisture and Ocean Salinity (SMOS) data have allowed to produce, for the first time, satellite sea surface salinity (SSS) maps in the Mediterranean Sea that capture the signature of Algerian eddies. SMOS data can be used to track them for long periods of time, especially during winter. SMOS SSS maps are well correlated with in situ measurements although the former has a smaller dynamical range. Despite this limitation, SMOS SSS maps capture the key dynamics of Algerian eddies allowing to retrieve velocities from SSS with the correct sign of vorticityThis work has been funded by the Spanish Ministry of Economy through the National R+D Plan by means of Promises project (ESP2015-67549-C3) and previous grants and by the European Space Agency through the GlobCurrent Data User Element project (4000109513/13/I-LG). Financial support by Fundación General CSIC (Programa ComFuturo) is also acknowledgedPeer Reviewe

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Molecular Aspects of the Interaction with Gram-Negative and Gram-Positive Bacteria of Hydrothermal Carbon Nanoparticles Associated with Bac8c2,5Leu Antimicrobial Peptide

    Get PDF
    Molecular Aspects of the Interaction with Gram-Negative and Gram- Positive Bacteria of Hydrothermal Carbon Nanoparticles Associated with Bac8c2,5Leu Antimicrobial Peptide Giulia Barzan,⊥ Ida Kokalari,⊥ Giacomo Gariglio, Elena Ghibaudi, Marc Devocelle, Marco P. Monopoli, Alessio Sacco, Angelo Greco, Andrea M. Giovannozzi, Andrea M. Rossi, and Ivana Fenoglio* Cite This: https://doi.org/10.1021/acsomega.2c00305 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Antimicrobial peptides (AMPs) are widely studied as therapeutic agents due to their broad-spectrum efficacy against infections. However, their clinical use is hampered by the low in vivo bioavailability and systemic toxicity. Such limitations might be overcome by using appropriate drug delivery systems. Here, the preparation of a drug delivery system (DDS) by physical conjugation of an arginine-rich peptide and hydrothermal carbon nanoparticles (CNPs) has been explored, and its antimicrobial efficacy against Eschericia coli (E. coli) and Staphylococcus aureus investigated in comparison with the unloaded carrier and the free peptide. The mechanism of interaction between CNPs and the bacteria was investigated by scanning electron microscopy and a combined dielectrophoresis−Raman spectroscopy method for real- time analysis. In view of a possible systemic administration, the effect of proteins on the stability of the DDS was investigated by using albumin as a model protein. The peptide was bounded electrostatically to the CNPs surface, establishing an equilibrium modulated by pH and albumin. The DDS exhibited antimicrobial activity toward the two bacterial strains, albeit lower as compared to the free peptide. The decrease in effectiveness toward E. coli was likely due to the rapid formation of a particle-induced extracellular matrix. The present results are relevant for the future development of hydrothermal CNPs as drug delivery agents of AMP

    Synergy of wind wave model simulations and satellite observations during extreme events

    Get PDF
    In this study, the quality of wave data provided by the new Sentinel-3A satellite is evaluated and the sensitivity of the wave model to wind forcing is tested. We focus on coastal areas, where altimeter data are of lower quality and wave modelling is more complex than for the open ocean. In the first part of the study, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, such as ERA-Interim and ERA5 reanalyses, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis and short-range forecasts, German Weather Service (DWD) forecasts and regional atmospheric model simulations (coastDat). Numerical simulations show that the wave model forced using the ERA5 reanalyses and that forced using the ECMWF operational analysis/forecast demonstrate the best capability over the whole study period, as well as during extreme events. To further estimate the variance of the significant wave height of ensemble members for different wind forcings, especially during extreme events, an empirical orthogonal function (EOF) analysis is performed. In the second part of the study, the satellite data of Sentinel-3A, Jason-2 and CryoSat-2 are assessed in comparison with in situ measurements and spectral wave model (WAM) simulations. Intercomparisons between remote sensing and in situ observations demonstrate that the overall quality of the former is good over the North Sea and Baltic Sea throughout the study period, although the significant wave heights estimated based on satellite data tend to be greater than the in situ measurements by 7 to 26&thinsp;cm. The quality of all satellite data near the coastal area decreases; however, within 10&thinsp;km off the coast, Sentinel-3A performs better than the other two satellites. Analyses in which data from satellite tracks are separated in terms of onshore and offshore flights have been carried out. No substantial differences are found when comparing the statistics for onshore and offshore flights. Moreover, no substantial differences are found between satellite tracks under various metocean conditions. Furthermore, the satellite data quality does not depend on the wind direction relative to the flight direction. Thus, the quality of the data obtained by the new Sentinel-3A satellite over coastal areas is improved compared to that of older satellites.</p
    corecore