13,094 research outputs found
Calculating and understanding the value of any type of match evidence when there are potential testing errors
It is well known that Bayes’ theorem (with likelihood ratios) can be used to calculate the impact of evidence, such as a ‘match’ of some feature of a person. Typically the feature of interest is the DNA profile, but the method applies in principle to any feature of a person or object, including not just DNA, fingerprints, or footprints, but also more basic features such as skin colour, height, hair colour or even name. Notwithstanding concerns about the extensiveness of databases of such features, a serious challenge to the use of Bayes in such legal contexts is that its standard formulaic representations are not readily understandable to non-statisticians. Attempts to get round this problem usually involve representations based around some variation of an event tree. While this approach works well in explaining the most trivial instance of Bayes’ theorem (involving a single hypothesis and a single piece of evidence) it does not scale up to realistic situations. In particular, even with a single piece of match evidence, if we wish to incorporate the possibility that there are potential errors (both false positives and false negatives) introduced at any stage in the investigative process, matters become very complex. As a result we have observed expert witnesses (in different areas of speciality) routinely ignore the possibility of errors when presenting their evidence. To counter this, we produce what we believe is the first full probabilistic solution of the simple case of generic match evidence incorporating both classes of testing errors. Unfortunately, the resultant event tree solution is too complex for intuitive comprehension. And, crucially, the event tree also fails to represent the causal information that underpins the argument. In contrast, we also present a simple-to-construct graphical Bayesian Network (BN) solution that automatically performs the calculations and may also be intuitively simpler to understand. Although there have been multiple previous applications of BNs for analysing forensic evidence—including very detailed models for the DNA matching problem, these models have not widely penetrated the expert witness community. Nor have they addressed the basic generic match problem incorporating the two types of testing error. Hence we believe our basic BN solution provides an important mechanism for convincing experts—and eventually the legal community—that it is possible to rigorously analyse and communicate the full impact of match evidence on a case, in the presence of possible error
Thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions and hysteresis
A crossover at a temperature T* in the temperature dependence of the width s
of the distribution of switching currents of moderately damped Josephson
junctions has been reported in a number of recent publications, with positive
ds/dT and IV characteristics associated with underdamped behaviour for lower
temperatures T<T*, and negative ds/dT and IV characteristics resembling
overdamped behaviour for higher temperatures T>T*. We have investigated in
detail the behaviour of Josephson junctions around the temperature T* by using
Monte Carlo simulations including retrapping from the running state into the
supercurrent state as given by the model of Ben-Jacob et al. We develop
discussion of the important role of multiple escape and retrapping events in
the moderate-damping regime, in particular considering the behaviour in the
region close to T*. We show that the behaviour is more fully understood by
considering two crossover temperatures, and that the shape of the distribution
and s(T) around T*, as well as at lower T<T*, are largely determined by the
shape of the conventional thermally activated switching distribution. We show
that the characteristic temperatures T* are not unique for a particular
Josephson junction, but have some dependence on the ramp rate of the applied
bias current. We also consider hysteresis in moderately damped Josephson
junctions and discuss the less commonly measured distribution of return
currents for a decreasing current ramp. We find that some hysteresis should be
expected to persist above T* and we highlight the importance, even well below
T*, of accounting properly for thermal fluctuations when determining the
damping parameter Q.Comment: Accepted for publication in PR
Ireland’s Rural Environment: Research Highlights from Johnstown Castle
ReportThis booklet gives a flavour of the current research in Teagasc Johnstown Castle Research Centre and introduces you to the staff involved. It covers the areas of Nutrient Efficiency, Gaseous emissions, Agricultural Ecology, Soils and Water quality
Carbon and nitrogen dynamics: Greenhouse gases in groundwater beneath a constructed wetland treating municipal wastewater
Conference oral presentationConstructed wetlands (CW) act as nitrogen (N) sinks and reactors facilitating a number of physical, chemical and biological processes. The N removal efficiency of through-flowing water in such systems when used to treat municipal wastewater is variable. Their overall removal efficiencies do not specifically explain which N species have been removed by physical attenuation, and by biological assimilation or transformation to other forms. A wider understanding of how N removal occurs would help elucidate how losses of N and associated gases from CW impact on water and air quality. The objective of this study is to investigate the C and N cycling processes in the porewater of soils immediately adjacent, up-gradient and down- gradient to helophyte —vegetated CW cells
Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity
It has become widely accepted that the most dangerous cardiac arrhythmias are
due to re- entrant waves, i.e., electrical wave(s) that re-circulate repeatedly
throughout the tissue at a higher frequency than the waves produced by the
heart's natural pacemaker (sinoatrial node). However, the complicated structure
of cardiac tissue, as well as the complex ionic currents in the cell, has made
it extremely difficult to pinpoint the detailed mechanisms of these
life-threatening reentrant arrhythmias. A simplified ionic model of the cardiac
action potential (AP), which can be fitted to a wide variety of experimentally
and numerically obtained mesoscopic characteristics of cardiac tissue such as
AP shape and restitution of AP duration and conduction velocity, is used to
explain many different mechanisms of spiral wave breakup which in principle can
occur in cardiac tissue. Some, but not all, of these mechanisms have been
observed before using other models; therefore, the purpose of this paper is to
demonstrate them using just one framework model and to explain the different
parameter regimes or physiological properties necessary for each mechanism
(such as high or low excitability, corresponding to normal or ischemic tissue,
spiral tip trajectory types, and tissue structures such as rotational
anisotropy and periodic boundary conditions). Each mechanism is compared with
data from other ionic models or experiments to illustrate that they are not
model-specific phenomena. The fact that many different breakup mechanisms exist
has important implications for antiarrhythmic drug design and for comparisons
of fibrillation experiments using different species, electromechanical
uncoupling drugs, and initiation protocols.Comment: 128 pages, 42 figures (29 color, 13 b&w
Australian Cosmic Ray Modulation Research
Australian research into variations of the cosmic ray flux arriving at the
Earth has played a pivotal role for more than 50 years. The work has been
largely led by the groups from the University of Tasmania and the Australian
Antarctic Division and has involved the operation of neutron monitors and muon
telescopes from many sites. In this paper the achievements of the Australian
researchers are reviewed and future experiments are described. Particular
highlights include: the determination of cosmic ray modulation parameters; the
development of modelling techniques of Ground Level Enhancements; the
confirmation of the Tail-In and Loss-Cone Sidereal anisotropies; the Space Ship
Earth collaboration; and the Solar Cycle latitude survey.Comment: 47 pages, 37 figures, LaTeX, invited review, in press PASA 18(1).
HTML version available at http://www.atnf.csiro.au/pasa/18_1/duldig/paper
Risk Aggregation in the presence of Discrete Causally Connected Random Variables
Risk aggregation is a popular method used to estimate the sum of a collection of financial assets or events, where each asset or event is modelled as a random variable. Applications include insurance, operational risk, stress testing, and sensitivity analysis. In practice the sum of a set of random variables involves the use of two well-known mathematical operations: n-fold convolution (for a fixed number n) and N-fold convolution, defined as the compound sum of a frequency distribution N and a severity distribution, where the number of constant n-fold convolutions is determined by N. Where the severity and frequency variables are independent, and continuous, currently numerical solutions such as, Panjer’s recursion, Fast Fourier transforms and Monte Carlo simulation produce acceptable results. However, they have not been designed to cope with new modelling challenges that require hybrid models containing discrete explanatory (regime switching) variables or where discrete and continuous variables are inter-dependent and may influence the severity and frequency in complex, non-linear, ways. This paper de-scribes a Bayesian Factorization and Elimination (BFE) algorithm that performs convo
Recommended from our members
Bayesian belief network model for the safety assessment of nuclear computer-based systems
The formalism of Bayesian Belief Networks (BBNs) is being increasingly applied to probabilistic modelling and decision problems in a widening variety of fields. This method provides the advantages of a formal probabilistic model, presented in an easily assimilated visual form, together with the ready availability of efficient computational methods and tools for exploring model consequences. Here we formulate one BBN model of a part of the safety assessment task for computer and software based nuclear systems important to safety. Our model is developed from the perspective of an independent safety assessor who is presented with the task of evaluating evidence from disparate sources: the requirement specification and verification documentation of the system licensee and of the system manufacturer; the previous reputation of the various participants in the design process; knowledge of commercial pressures;information about tools and resources used; and many other sources. Based on these multiple sources of evidence, the independent assessor is ultimately obliged to make a decision as to whether or not the system should be licensed for operation within a particular nuclear plant environment. Our BBN model is a contribution towards a formal model of this decision problem. We restrict attention to a part of this problem: the safety analysis of the Computer System Specification documentation. As with other BBN applications we see this modelling activity as having several potential benefits. It employs a rigorous formalism as a focus for examination, discussion, and criticism of arguments about safety. It obliges the modeller to be very explicit about assumptions concerning probabilistic dependencies, correlations, and causal relationships. It allows sensitivity analyses to be carried out. Ultimately we envisage this BBN, or some later development of it, forming part of a larger model, which might well take the form of a larger BBN model, covering all sources of evidence about pre-operational life-cycle stages. This could provide an integrated model of all aspects of the task of the independent assessor, leading up to the final judgement about system safety in a particular context. We expect to offer some results of this further work later in the DeVa project
- …
