5,220 research outputs found
Observation of incipient charge nematicity in Ba(FeCo)As
Using electronic Raman spectroscopy, we report direct measurements of charge
nematic fluctuations in the tetragonal phase of strain-free
Ba(FeCoAs single crystals. The strong enhancement of
the Raman response at low temperatures unveils an underlying charge nematic
state that extends to superconducting compositions and which has hitherto
remained unnoticed. Comparison between the extracted charge nematic
susceptibility and the elastic modulus allows us to disentangle the charge
contribution to the nematic instability, and to show that charge nematic
fluctuations are weakly coupled to the lattice.Comment: 9 pages, 8 figures (including supplemental material
The HARPS search for southern extrasolar planets. XXIII. 8 planetary companions to low-activity solar-type stars
In this paper, we present our HARPS radial-velocity data for eight
low-activity solar-type stars belonging to the HARPS volume-limited sample:
HD6718, HD8535, HD28254, HD290327, HD43197, HD44219, HD148156, and HD156411.
Keplerian fits to these data reveal the presence of low-mass companions around
these targets. With minimum masses ranging from 0.58 to 2.54 MJup, these
companions are in the planetary mass domain. The orbital periods of these
planets range from slightly less than one to almost seven years. The eight
orbits presented in this paper exhibit a wide variety of eccentricities: from
0.08 to above 0.8.Comment: 8 pages, 2 figures, accepted for publication in A&
Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in FeSeTe
Using bulk magnetization along with elastic and inelastic neutron scattering
techniques, we have investigated the phase diagram of
FeSeTe and the nature of magnetic correlations in three
nonsuperconducting samples of FeSeTe,
FeSeTe and FeSeTe. A cusp
and hysteresis in the temperature dependence of the magnetization for the
and 0.3 samples indicates spin-glass (SG) ordering below K. Neutron scattering measurements indicate that the spin-glass behavior is
associated with short-range spin density wave (SDW) ordering characterized by a
static component and a low-energy dynamic component with a characteristic
incommensurate wave vector of and an anisotropy
gap of 2.5 meV. Our high -resolution data also show that the
systems undergo a glassy structural distortion that coincides with the
short-range SDW order
Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom
This manuscript describes the detailed characterization of edible films made from two different protein products e whey protein isolate (WPI) and whey protein concentrate (WPC), added with three levels of glycerol (Gly) e i.e. 40, 50 and 60%(w/w). The molecular structure, as well as barrier, tensile, thermal,surface and optical properties of said films were determined, in attempts to provide a better understanding of the effects of proteinaceous purity and Gly content of the feedstock. WPI films exhibited statistically lower (p < 0.05) moisture content (MC), film solubility (S), water activity, water vapor permeability (WVP), oxygen and carbon dioxide permeabilities (O2P and CO2P, respectively) and color change values, as well as statistically higher (p < 0.05) density, surface hydrophobicity, mechanical resistance, elasticity, extensibility and transparency values than their WPC counterparts, for the same
content of Gly. These results are consistent with data from thermal and FTIR analyses. Furthermore,a significant increase (p < 0.05) was observed in MC, S, WVP, O2P, CO2P, weight loss and extensibility of
both protein films when the Gly content increased; whereas a significant decrease (p < 0.05) was observed in thermal features, as well as in mechanical resistance and elasticity e thus leading to weaker films. Therefore, fundamental elucidation was provided on the features of WPI and WPC germane to food packaging e along with suggestions to improve the most critical ones, i.e. extensibility and WVP.Partial funding for this research work was provided by project Milkfilm, administered by Agência de Inovação e POCTI: Programa Operacional de Ciência, Tecnologia e Inovação (Portugal) Funding for author O. L. Ramos was via a postdoctoral fellowship (ref. SFRH/BPD/80766/2011), administered by Fundação para a Ciência e a Tecnologia (Portugal) and supervised by author F. X.Malcata. A minor part of the experimental work was performed in CBQF premise
Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions
The stellar mass-luminosity relation (MLR) is one of the most famous
empirical "laws", discovered in the beginning of the 20th century. MLR is still
used to estimate stellar masses for nearby stars, particularly for those that
are not binary systems, hence the mass cannot be derived directly from the
observations. It's well known that the MLR has a statistical dispersion which
cannot be explained exclusively due to the observational errors in luminosity
(or mass). It is an intrinsic dispersion caused by the differences in age and
chemical composition from star to star. In this work we discuss the impact of
age and metallicity on the MLR. Using the recent data on mass, luminosity,
metallicity, and age for 26 FGK stars (all members of binary systems, with
observational mass-errors <= 3%), including the Sun, we derive the MLR taking
into account, separately, mass-luminosity, mass-luminosity-metallicity, and
mass-luminosity-metallicity-age. Our results show that the inclusion of age and
metallicity in the MLR, for FGK stars, improves the individual mass estimation
by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space
Scienc
Quantum Impurity Entanglement
Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is
studied using analytic methods as well as large scale numerical density matrix
renormalization group methods. The entanglement is investigated in terms of the
von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the
chain. The impurity contribution to the uniform part of the entanglement
entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <=
J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum
impurity model is in the universality class of the single channel Kondo model
and it is shown that in a quite universal way the presence of the impurity in
the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K,
associated with the screening of the impurity, the size of the Kondo screening
cloud. The universality of Kondo physics then implies scaling of the form
S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented
clearly demonstrating this scaling. At the critical point, J_2^c, an analytic
Fermi liquid picture is developed and analytic results are obtained both at T=0
and T>0. In the dimerized phase an appealing picure of the entanglement is
developed in terms of a thin soliton (TS) ansatz and the notions of impurity
valence bonds (IVB) and single particle entanglement (SPE) are introduced. The
TS-ansatz permits a variational calculation of the complete entanglement in the
dimerized phase that appears to be exact in the thermodynamic limit at the
Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the
critical point J_2^c. In appendices the relation between the finite temperature
entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed
and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro
Raman Scattering as a Probe of Charge Nematic Fluctuations in Iron Based Superconductors
International audienceWe report Raman scattering measurement of charge nematic fluctuations in the tetragonal phase of BaFe 2 As 2 and Sr(Fe 1−x Co x) 2 As 2 (x=0.04) single crystals. In both systems, the observed nematic fluctuations are found to exhibit divergent Curie-Weiss like behavior with very similar characteristic temperature scales, indicating a universal tendency towards charge nematic order in 122 iron-based superconductors
Recommended from our members
Women’s pelvic floor muscle strength and urinary and anal incontinence after childbirth: a cross-sectional study
Abstract OBJECTIVE To analyse pelvic floor muscle strength (PFMS) and urinary and anal incontinence (UI and AI) in the postpartum period. METHOD Cross-sectional study carried out with women in their first seven months after child birth. Data were collected through interviews, perineometry (Peritron™), and the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF). RESULTS 128 women participated in the study. The PFMS mean was 33.1 (SD=16.0) cmH2O and the prevalence of UI and AI was 7.8% and 5.5%, respectively. In the multiple analyses, the variables associated with PFMS were type of birth and cohabitation with a partner. Newborn’s weight, previous pregnancy, UI during pregnancy, and sexual activity showed an association with UI after child birth. Only AI prior to pregnancy was associated with AI after childbirth. CONCLUSION Vaginal birth predisposes to the reduction of PFMS, and caesarean section had a protective effect to its reduction. The occurrence of UI during pregnancy is a predictor of UI after childbirth, and women with previous pregnancies and newborns with higher weights are more likely to have UI after childbirth.AI prior to pregnancy is the only risk factor for its occurrence after childbirth. Associations between PFMS and cohabitation with a partner, and between UI and sexual activity do not make possible to conclude that these variables are directly associated
WormBase 2007
WormBase (www.wormbase.org) is the major publicly available database of information about Caenorhabditis elegans, an important system for basic biological and biomedical research. Derived from the initial ACeDB database of C. elegans genetic and sequence information, WormBase now includes the genomic, anatomical and functional information about C. elegans, other Caenorhabditis species and other nematodes. As such, it is a crucial resource not only for C. elegans biologists but the larger biomedical and bioinformatics communities. Coverage of core areas of C. elegans biology will allow the biomedical community to make full use of the results of intensive molecular genetic analysis and functional genomic studies of this organism. Improved search and display tools, wider cross-species comparisons and extended ontologies are some of the features that will help scientists extend their research and take advantage of other nematode species genome sequences
Uncertainties in projecting climate-change impacts in marine ecosystems
Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet theyare inevitablyassociated withuncertainty.Identifying,quantifying,andcommunicatingthisuncertaintyis keytobothevaluatingtherisk associated with a projection and building confidence in its robustness. Wereview howuncertainties in such projections are handled in marine science. We employan approach developedin climatemodelling by breaking uncertainty down into(i) structural (model) uncertainty,(ii) initialization and internalvariabilityuncertainty,(iii)parametricuncertainty,and(iv)scenariouncertainty.Foreachuncertaintytype,wethenexaminethecurrent state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gainsontheseasonal-to-decadaltime-scale.Weconcludethatallpartsofmarinesciencecouldbenefitfromagreaterexchangeofideas,particularly concerningsuchauniversalproblemsuchasthetreatmentofuncertainty.Finally,marinescienceshouldstrivetoreachthepointwherescenario uncertainty is the dominant uncertainty in our projections
- …
