1,917 research outputs found
A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell
A fluorescence correlation spectroscopy (FCS) system based on two independent
measurement volumes is presented. The optical setup and data acquisition
hardware are detailed, as well as a complete protocol to control the location,
size and shape of the measurement volumes. A method that allows to monitor
independently the excitation and collection efficiency distribution is
proposed. Finally, a few examples of measurements that exploit the two spots in
static and/or scanning schemes, are reported.Comment: Accepted for publication in Review of Scientific Instrumen
Harmonised Principles for Public Participation in Quality Assurance of Integrated Water Resources Modelling
The main purpose of public participation in integrated water resources modelling is to improve decision-making by ensuring that decisions are soundly based on shared knowledge, experience and scientific evidence. The present paper describes stakeholder involvement in the modelling process. The point of departure is the guidelines for quality assurance for `scientific` water resources modelling developed under the EU research project HarmoniQuA, which has developed a computer based Modelling Support Tool (MoST) to provide a user-friendly guidance and a quality assurance framework that aim for enhancing the credibility of river basin modelling. MoST prescribes interaction, which is a form of participation above consultation but below engagement of stakeholders and the public in the early phases of the modelling cycle and under review tasks throughout the process. MoST is a flexible tool which supports different types of users and facilitates interaction between modeller, manager and stakeholders. The perspective of using MoST for engagement of stakeholders e.g. higher level participation throughout the modelling process as part of integrated water resource management is evaluate
Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well
Microphotoluminescence mapping experiments were performed on a modulation
doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The
zero field splitting that reveals the presence of a spontaneous magnetization
in the low-temperature phase, is measured locally; its fluctuations are
compared to those of the spin content and of the carrier density, also measured
spectroscopically in the same run. We show that the fluctuations of the carrier
density are the main mechanism responsible for the fluctuations of the
spontaneous magnetization in the ferromagnetic phase, while those of the Mn
spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure
Excitonic giant Zeeman effect in GaN:Mn^3+
We describe a direct observation of the excitonic giant Zeeman splitting in
(Ga,Mn)N, a wide-gap III-V diluted magnetic semiconductor. Reflectivity and
absorption spectra measured at low temperatures display the A and B excitons,
with a shift under magnetic field due to s,p-d exchange interactions. Using an
excitonic model, we determine the difference of exchange integrals between
Mn^3+ and free carriers in GaN, N_0(alpha-beta)=-1.2 +/- 0.2 eV. Assuming a
reasonable value of alpha, this implies a positive sign of beta which
corresponds to a rarely observed ferromagnetic interaction between the magnetic
ions and the holes.Comment: 4 pages, 4 figure
p-Type doping of II-VI heterostructures from surface states: application to ferromagnetic CdMnTe quantum wells
We present a study of p-type doping of CdTe and CdMnTe quantum
wells from surface states. We show that this method is as efficient as usual
modulation doping with nitrogen acceptors, and leads to hole densities
exceeding cm. Surface doping was successfully applied
to obtain carrier-induced ferromagnetism in a CdMnTe quantum well.
The observed temperature dependence of photoluminescence spectra, and the
critical temperature, correspond well to those previously reported for
ferromagnetic quantum wells doped with nitrogen.Comment: 4 figure
Observation of strong-coupling effects in a diluted magnetic semiconductor (Ga,Fe)N
A direct observation of the giant Zeeman splitting of the free excitons in
(Ga,Fe)N is reported. The magnetooptical and magnetization data imply the
ferromagnetic sign and a reduced magnitude of the effective p-d exchange energy
governing the interaction between Fe^{3+} ions and holes in GaN, N_0 beta^(app)
= +0.5 +/- 0.2 eV. This finding corroborates the recent suggestion that the
strong p-d hybridization specific to nitrides and oxides leads to significant
renormalization of the valence band exchange splitting.Comment: 4 pages, 2 figure
Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O
This work presents results of near-band gap magnetooptical studies on
(Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and
photoluminescence, that shift towards higher energies when the Mn concentration
increases and split nonlinearly under the magnetic field. Excitonic shifts are
determined by the s,p-d exchange coupling to magnetic ions, by the
electron-hole s-p exchange, and the spin-orbit interactions. A quantitative
description of the magnetoreflectivity findings indicates that the free
excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands,
respectively, the order reversed as compared to wurtzite GaN. Furthermore, our
results show that the magnitude of the giant exciton splittings, specific to
dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is
described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what
points to small and positive N_0 beta. It is shown that both the increase of
the gap with x and the small positive value of the exchange energy N_0 beta
corroborate recent theory describing the exchange splitting of the valence band
in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure
Observation of Fragile-to-Strong Dynamic Crossover in Protein Hydration Water
At low temperatures proteins exist in a glassy state, a state which has no
conformational flexibility and shows no biological functions. In a hydrated
protein, at and above 220 K, this flexibility is restored and the protein is
able to sample more conformational sub-states, thus becomes biologically
functional. This 'dynamical' transition of protein is believed to be triggered
by its strong coupling with the hydration water, which also shows a similar
dynamic transition. Here we demonstrate experimentally that this sudden switch
in dynamic behavior of the hydration water on lysozyme occurs precisely at 220
K and can be described as a Fragile-to-Strong dynamic crossover (FSC). At FSC,
the structure of hydration water makes a transition from predominantly
high-density (more fluid state) to low-density (less fluid state) forms derived
from existence of the second critical point at an elevated pressure.Comment: 6 pages (Latex), 4 figures (Postscript
- …
