537 research outputs found
D=7 / D=6 Heterotic Supergravity with Gauged R-Symmetry
We construct a family of chiral anomaly-free supergravity theories in D=6
starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a
Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry
yields a positive (de Sitter sign) D=6 scalar field potential. Classical
anomaly inflow which is needed to cancel boundary-field loop anomalies requires
careful consideration of the gravitational, gauge, mixed and local
supersymmetry anomalies. Coupling of boundary hypermultiplets requires care
with the Sp(1) gauge connection required to obtain quaternionic Kahler target
manifolds in D=6. This class of gauged R-symmetry models may be of use as
starting points for further compactifications to D=4 that take advantage of the
positive scalar potential, such as those proposed in the scenario of
supersymmetry in large extra dimensions.Comment: 43 pages, plain Latex; Clarification of discussion and references
adde
Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds
The six-dimensional effective action of F-theory compactified on a singular
elliptically fibred Calabi-Yau threefold is determined by using an M-theory
lift. The low-energy data are derived by comparing a circle reduction of a
general six-dimensional (1,0) gauged supergravity theory with the effective
action of M-theory on the resolved Calabi-Yau threefold. The derivation
includes six-dimensional tensor multiplets for which the (anti-) self-duality
constraints are imposed on the level of the five-dimensional action. The vector
sector of the reduced theory is encoded by a non-standard potential due to the
Green-Schwarz term in six dimensions. This Green-Schwarz term also contains
higher curvature couplings which are considered to establish the full map
between anomaly coefficients and geometry. F-/M-theory duality is exploited by
moving to the five-dimensional Coulomb branch after circle reduction and
integrating out massive vector multiplets and matter hypermultiplets. The
associated fermions then generate additional Chern-Simons couplings at
one-loop. Further couplings involving the graviphoton are induced by quantum
corrections due to excited Kaluza-Klein modes. On the M-theory side integrating
out massive fields corresponds to resolving the singularities of the Calabi-Yau
threefold, and yields intriguing relations between six-dimensional anomalies
and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections
improve
An Exact Fluctuating 1/2-BPS Configuration
This work explores the role of thermodynamic fluctuations in the two
parameter giant and superstar configurations characterized by an ensemble of
arbitrary liquid droplets or irregular shaped fuzzballs. Our analysis
illustrates that the chemical and state-space geometric descriptions exhibit an
intriguing set of exact pair correction functions and the global correlation
lengths. The first principle of statistical mechanics shows that the possible
canonical fluctuations may precisely be ascertained without any approximation.
Interestingly, our intrinsic geometric study exemplifies that there exist exact
fluctuating 1/2-BPS statistical configurations which involve an ensemble of
microstates describing the liquid droplets or fuzzballs. The Gaussian
fluctuations over an equilibrium chemical and state-space configurations
accomplish a well-defined, non-degenerate, curved and regular intrinsic
Riemannian manifolds for all physically admissible domains of black hole
parameters. An explicit computation demonstrates that the underlying chemical
correlations involve ordinary summations, whilst the state-space correlations
may simply be depicted by standard polygamma functions. Our construction
ascribes definite stability character to the canonical energy fluctuations and
to the counting entropy associated with an arbitrary choice of excited boxes
from an ensemble of ample boxes constituting a variety of Young tableaux.Comment: Minor changes, added references, 30 pages, 4 figures, PACS numbers:
04.70.-s: Physics of black holes; 04.70.-Bw: Classical black holes; 04.50.Gh
Higher-dimensional black holes, black strings, and related objects; 04.60.Cf
Gravitational aspects of string theory, accepted for publication in JHE
All the timelike supersymmetric solutions of all ungauged d=4 supergravities
We determine the form of all timelike supersymmetric solutions of all N
greater or equal than 2, d=4 ungauged supergravities, for N less or equal than
4 coupled to vector supermultiplets, using the $Usp(n+1,n+1)-symmetric
formulation of Andrianopoli, D'Auria and Ferrara and the spinor-bilinears
method, while preserving the global symmetries of the theories all the way. As
previously conjectured in the literature, the supersymmetric solutions are
always associated to a truncation to an N=2 theory that may include
hypermultiplets, although fields which are eliminated in the truncations can
have non-trivial values, as is required by the preservation of the global
symmetry of the theories. The solutions are determined by a number of
independent functions, harmonic in transverse space, which is twice the number
of vector fields of the theory (n+1). The transverse space is flat if an only
if the would-be hyperscalars of the associated N=2 truncation are trivial.Comment: v3: Some changes in the introduction. Version to be published in JHE
Non-supersymmetric extremal multicenter black holes with superpotentials
Using the superpotential approach we generalize Denef's method of deriving
and solving first-order equations describing multicenter extremal black holes
in four-dimensional N = 2 supergravity to allow non-supersymmetric solutions.
We illustrate the general results with an explicit example of the stu model.Comment: 17 pages, v2: some clarifications adde
State-space Manifold and Rotating Black Holes
We study a class of fluctuating higher dimensional black hole configurations
obtained in string theory/ -theory compactifications. We explore the
intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the
Hessian of the coarse graining entropy, defined over an ensemble of brane
microstates. It has been shown that the state-space geometry spanned by the set
of invariant parameters is non-degenerate, regular and has a negative scalar
curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes,
supersymmetric black holes, - configurations and the
associated BMPV black holes. Interestingly, these solutions demonstrate that
the principal components of the state-space metric tensor admit a positive
definite form, while the off diagonal components do not. Furthermore, the ratio
of diagonal components weakens relatively faster than the off diagonal
components, and thus they swiftly come into an equilibrium statistical
configuration. Novel aspects of the scaling property suggest that the
brane-brane statistical pair correlation functions divulge an asymmetric
nature, in comparison with the others. This approach indicates that all above
configurations are effectively attractive and stable, on an arbitrary
hyper-surface of the state-space manifolds. It is nevertheless noticed that
there exists an intriguing relationship between non-ideal inter-brane
statistical interactions and phase transitions. The ramifications thus
described are consistent with the existing picture of the microscopic CFTs. We
conclude with an extended discussion of the implications of this work for the
physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry;
Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s
Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum
aspects of black holes, evaporation, thermodynamics; 04.50.Gh
Higher-dimensional black holes, black strings, and related objects. Edited
the bibliograph
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Ceacam1 separates graft-versus-host-disease from graft-versus-tumor activity after experimental allogeneic bone marrow transplantation.
BACKGROUND: Allogeneic bone marrow transplantation (allo-BMT) is a potentially curative therapy for a variety of hematologic diseases, but benefits, including graft-versus-tumor (GVT) activity are limited by graft-versus-host-disease (GVHD). Carcinoembryonic antigen related cell adhesion molecule 1 (Ceacam1) is a transmembrane glycoprotein found on epithelium, T cells, and many tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models.
METHODS: We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT) in mouse models. In vivo, Ceacam1(-/-) T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of donor T cells were positive for activation markers (CD25(hi), CD62L(lo)). Additionally, Ceacam1(-/-) CD8 T cells had greater expression of the gut-trafficking integrin α(4)β(7), though both CD4 and CD8 T cells were found increased numbers in the gut post-transplant. Ceacam1(-/-) recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells displayed increased activation. Additionally, Ceacam1(-/-) mice had increased mortality and decreased numbers of regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally, graft-versus-tumor survival in a Ceacam1(+) lymphoma model was improved in animals receiving Ceacam1(-/-) vs. control T cells.
CONCLUSIONS: We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue radiosensitivity. Because of its expression on both the donor graft and host tissues, this suggests that targeting Ceacam1 may represent a potent strategy for the regulation of GVHD and GVT after allogeneic transplantation
- …
