2,927 research outputs found
Variation of the Fine-Structure Constant and Laser Cooling of Atomic Dysprosium
Radio-frequency electric-dipole transitions between nearly degenerate,
opposite parity levels of atomic dysprosium (Dy) were monitored over an
eight-month period to search for a variation in the fine-structure constant,
. The data provide a rate of fractional temporal variation of
of yr or a value of for , the variation coefficient for in a changing
gravitational potential. All results indicate the absence of significant
variation at the present level of sensitivity. We also present initial results
on laser cooling of an atomic beam of dysprosium.Comment: 10 pages, 6 figures, fixed typos in section 5, updated result
Investigation of the Gravitational Potential Dependence of the Fine-Structure Constant Using Atomic Dysprosium
Radio-frequency E1 transitions between nearly degenerate, opposite parity
levels of atomic dysprosium were monitored over an eight month period to search
for a variation in the fine-structure constant. During this time period, data
were taken at different points in the gravitational potential of the Sun. The
data are fitted to the variation in the gravitational potential yielding a
value of for the fit parameter . This
value gives the current best laboratory limit. In addition, our value of
combined with other experimental constraints is used to extract
the first limits on k_e and k_q. These coefficients characterize the variation
of m_e/m_p and m_q/m_p in a changing gravitational potential, where m_e, m_p,
and m_q are electron, proton, and quark masses. The results are and .Comment: 6 pages, 3 figure
Frequency Dependent Viscosity Near the Critical Point: The Scale to Two Loop Order
The recent accurate measurements of Berg, Moldover and Zimmerli of the
viscoelastic effect near the critical point of xenon has shown that the scale
factor involved in the frequency scaling is about twice the scale factor
obtained theoretically. We show that this discrepancy is a consequence of using
first order perturbation theory. Including two loop contribution goes a long
way towards removing the discrepancy.Comment: No of pages:7,Submitted to PR-E(Rapid Communication),No of EPS
files:
Conformal Quantum Mechanics in Two Black Hole Moduli Space
We discuss quantum mechanics in the moduli space consisting of two maximally
charged dilaton black holes. The quantum mechanics of the two black hole system
is similar to the one of DFF model, and this system has the conformal
symmetry. Also, we discuss the bound states in this system.Comment: 15 pages, RevTeX3.0. References added, Minor correction
Effects of an in-plane magnetic field on c-axis sum rule and superfluid density in high- cuprates
In layered cuprates, the application of an in-plane magnetic field changes the c-axis optical sum rule and superfluid density . For
pure incoherent c-axis coupling, has no effect on either quantities
but it does if an additional coherent component is present. For the coherent
contribution, different characteristic variations on and on
temperature result from the constant part of the hopping matrix
element and from the part which has zero on the diagonal of the
Brillouin zone. Only the constant part leads to a dependence on
the direction of as well as on its magnitude.Comment: 3 figure
Choreography, controversy and child sex abuse: Theoretical reflections on a cultural criminological analysis of dance in a pop music video
This article was inspired by the controversy over claims of ‘pedophilia!!!!’ undertones and the ‘triggering’ of memories of childhood sexual abuse in some viewers by the dance performance featured in the music video for Sia’s ‘Elastic Heart’ (2015). The case is presented for acknowledging the hidden and/or overlooked presence of dance in social scientific theory and cultural studies and how these can enhance and advance cultural criminological research. Examples of how these insights have been used within other disciplinary frameworks to analyse and address child sex crime and sexual trauma are provided, and the argument is made that popular cultural texts such as dance in pop music videos should be regarded as significant in analysing and tracing public perceptions and epistemologies of crimes such as child sex abuse
Automatic improvement of apache spark queries using semantics-preserving program reduction
© 2016 ACM. Apache Spark is a popular framework for large-scale data analytics. Unfortunately, Spark's performance can be difficult to optimise, since queries freely expressed in source code are not amenable to traditional optimisation techniques. This article describes Hylas, a tool for automatically optimising Spark queries embedded in source code via the application of semantics-preserving transformations. The transformation method is inspired by functional programming techniques of "deforestation", which eliminate intermediate data structures from a computation. This contrasts with approaches defined entirely within structured query formats such as Spark SQL. Hylas can identify certain computationally expensive operations and ensure that performing them creates no superfluous data structures. This optimisation leads to significant improvements in execution time, with over 10,000 times improvement observed in some cases
Critical Ultrasonics Near the Superfluid Transition : Finite Size Effects
The suppression of order parameter fluctuations at the boundaries causes the
ultrasonic attenuation near the superfluid transition to be lowered below the
bulk value. We calculate explicitly the first deviation from the bulk value for
temperatures above the lambda point. This deviation is significantly larger
than for static quantities like the thermodynamic specific heat or other
transport properties like the thermal conductivity. This makes ultrasonics a
very effective probe for finite size effects.Comment: 10 pages (LaTeX), 1 figure (PostScript
Quantization of maximally-charged slowly-moving black holes
We discuss the quantization of a system of slowly-moving extreme
Reissner-Nordstrom black holes. In the near-horizon limit, this system has been
shown to possess an SL(2,R) conformal symmetry. However, the Hamiltonian
appears to have no well-defined ground state. This problem can be circumvented
by a redefinition of the Hamiltonian due to de Alfaro, Fubini and Furlan (DFF).
We apply the Faddeev-Popov quantization procedure to show that the Hamiltonian
with no ground state corresponds to a gauge in which there is an obstruction at
the singularities of moduli space requiring a modification of the quantization
rules. The redefinition of the Hamiltonian a la DFF corresponds to a different
choice of gauge. The latter is a good gauge leading to standard quantization
rules. Thus, the DFF trick is a consequence of a standard gauge-fixing
procedure in the case of black hole scattering.Comment: Corrected errors in the gauge-fixing procedur
Scaling of the superfluid density in high-temperature superconductors
A scaling relation \rho_s \simeq 35\sigma_{dc}T_c has been observed in the
copper-oxide superconductors, where \rho_s is the strength of the
superconducting condensate, T_c is the critical temperature, and \sigma_{dc} is
the normal-state dc conductivity close to T_c. This scaling relation is
examined within the context of a clean and dirty-limit BCS superconductor.
These limits are well established for an isotropic BCS gap 2\Delta and a
normal-state scattering rate 1/\tau; in the clean limit 1/\tau \ll 2\Delta, and
in the dirty limit 1/\tau > 2\Delta. The dirty limit may also be defined
operationally as the regime where \rho_s varies with 1/\tau. It is shown that
the scaling relation \rho_s \propto \sigma_{dc}T_c is the hallmark of a BCS
system in the dirty-limit. While the gap in the copper-oxide superconductors is
considered to be d-wave with nodes and a gap maximum \Delta_0, if 1/\tau >
2\Delta_0 then the dirty-limit case is preserved. The scaling relation implies
that the copper-oxide superconductors are likely to be in the dirty limit, and
that as a result the energy scale associated with the formation of the
condensate is scaling linearly with T_c. The a-b planes and the c axis also
follow the same scaling relation. It is observed that the scaling behavior for
the dirty limit and the Josephson effect (assuming a BCS formalism) are
essentially identical, suggesting that in some regime these two effects may be
viewed as equivalent. This raises the possibility that electronic
inhomogeneities in the copper-oxygen planes may play an important role in the
nature of the superconductivity in the copper-oxide materials.Comment: 8 pages with 5 figures and 1 tabl
- …
