53,363 research outputs found
A sacred landscape: an enquiry of the “Cubas” from the South of Portugal
Ponencia presentada a Session 9: Forma urbana y relaciones entre historia y proyecto: el medio ambiente como patrimonio / Urban form and relationships between design and history: environmental heritage, arquitecture and planningThe purpose of this paper is to study the cubas – small constructions known for their domes painted with whitewash – specifically those located in the “kûra” of Beja in Portugal. Although we can pinpoint the existence of many of these buildings in the Beja territorial area, many questions remain about them, such as: What was the purpose of the cubas? When were they built? What is their origin? In order to try and answer these questions, I will be following two methods of analysis. First, I will focus on the correlation that exists between these buildings and the landscape in which they are located. This can shed some light on the reason behind their construction and the purpose of this type of structures. Secondly, I will analyse the buildings themselves – with special attention given to the metric and constructive analysis – in order to clarify the period of construction and the origin of their architectural typology. With this project I also aim to raise awareness of both the academic community and the political decision-makers on the existence of these buildings and their importance for the understanding of Iberian-Islamic culture. And maybe this can eventually inspire political action that will lead to the forging of policies for the preservation of this important part of our architectural and cultural heritage
Heteroreceptor complexes and their allosteric receptor-receptor interactions in the central nervous system. Focus on examples from Dopamine D2 and Serotonin 5-HT1a receptors
GPCR interacting proteins (specially β- arrestin) and their receptor-protein interactions are also covered but their interactions with the allosteric receptor-receptor interactions in heteroreceptor complexes remain to be elucidated. The physiological and pathological relevance of the allosteric receptor-receptor interactions in heteroreceptor complexes is emphasized and novel strategies for treatment of mental and neurological disease are introduced based on this new biological principle of integration.
This work gives further experimental evidences which strongly support the current view that allosteric receptor–receptor interactions in heteroreceptor complexes appear to represent a new principle in biology making possible integration of signals already at the level of the plasma membrane. These heteroreceptor complexes and their dynamics may be part of the molecular basis of learning and memory. The receptor protomers and their allosteric receptor-receptor interactions can be disturbed in neurological and mental disorders, and in diseases of peripheral tissues like the endocrine, cardiovascular and immune systems.
The dopamine (DA) neuron system most relevant for schizophrenia and Parkinson s diseases is the meso-limbic-cortical DA system inter alia densely innervating subcortical limbic regions as well as the dorsal striatum. The field of dopamine D2Rs changed significantly with the discovery of many types of D2R heteroreceptor complexes in the ventral and dorsal striatum. The results indicate that the D2R is a hub receptor (www.gpcr-hetnet.com) which interacts not only with many other GPCRs including DA isoreceptors but also with ion-channel receptors, receptor tyrosine kinases, scaffolding proteins and DA transporters. Disturbances in several of these D2R heteroreceptor complexes may contribute to the development of schizophrenia and Parkinson s diseases through changes in the balance of diverse D2R homo- and heteroreceptor complexes mediating the DA signal, especially to the ventral striato-pallidal GABA pathway. In schizophrenia, this will have consequences for the control of this pathway of the glutamate drive to the prefrontal cortex via the mediodorsal thalamic nucleus which can contribute to psychotic processes.
Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the GPCR protomers. In A2A-D2R heteroreceptor complexes allosteric A2A-D2R receptor-receptor interaction brings about a biased modulation of the D2R protomer signalling (Chapter 1). A conformational state of the D2R is induced which moves away from Gi/o signaling and instead favours b-arrestin2 mediated signalling which may be the main mechanism for its atypical antipsychotic properties especially linked to the limbic A2AR-D2R heteroreceptor complexes. Furthermore, D2R-NTS1R heterocomplexes also exist in the ventral and dorsal striatum (Chapter 2) and likely also in midbrain DA nerve cells as D2R-NTS1R autoreceptor complexes where neurotensin produces antipsychotic and propsychotic actions, respectively. D2R protomer appeared to bias the specificity of the NT orthosteric binding site towards neuromedin N vs neurotensin in the heteroreceptor complex.
There is a new awareness that Receptor tyrosine kinases (RTK) and transmitter activated GPCR possess the capacity for transactivation not only via GPCR induced release of neurotrophic factors, but also during signal initiation and propagation, using shared signaling pathways or using themselves as signaling platforms via direct allosteric receptor–receptor interactions. RTK are a family of transmembrane- spanning receptors that mediate the signaling from ligands such as growth factors, like the platelet-derived growth factor (PDGF), epidermal growth factor (EGF), the brain derived neurotrophic factor (BDNF), and the fibroblast growth factor (FGF). This hypothesis on direct GPCR-RTK receptor-receptor interactions in heteroreceptor complexes was introduced by Fuxe et al 1983. They also proposed the existence of 5- HT1A-FGFR1 heteroreceptor complexes having a role in depression. The hypothesis was introduced that the neurotrophic system FGF-2/FGFR1 may be a good candidate to mediate antidepressant induced improvement in 5-HT neuronal communication and neurotrophism with regeneration of connections lost during depression. RTK transactivation in response to antidepressant drug treatment was postulated to take place via a new allosteric receptor–receptor between distinct serotonin receptor subtypes and FGFR1 in heteroreceptor complexes.
The discovery of brain FGFR1-5-HT1A heteroreceptor complexes and their enhancement of neuroplasticity offers an integration of the serotonin and the neurotrophic factor hypotheses of depression at the molecular level. These heteroreceptor complexes were found in the hippocampus and midbrain raphe 5-HT nerve cells, enriched in 5-HT1A autoreceptors. Based on the triplet puzzle theory several sets of triplet homologies were identified that may be part of the receptor interface. Combined FGF-2 and 5-HT1A agonist treatment increased the formation of these heterocomplexes and the facilitatory allosteric receptor-receptor interactions within them leading to an enhancement of FGFR1 signaling (Chapter 3). This integrative phenomenon is reciprocal and RTK signaling can be placed downstream of GPCRs. Formation of such heterocomplexes involving two major classes of membrane receptors can be involved in regulating all aspects of receptor protomer function including recognition, signaling, trafficking, desensitization, and downregulation (Chapter 3). These events were associated with development of rapid antidepressant effects. These heteroreceptor complexes are a novel target for antidepressant drugs.
These examples, based on solid experimental evidences, serve to illustrate that allosteric receptor-receptor interactions in GPCR heteroreceptor complexes play a significant role in receptor diversity and bias of the participating GPCR protomers.G-protein coupled receptors (GPCR)-mediated signalling is a more complicated process than described previously since every GPCR and GPCR heteromer requires a set of G protein interacting proteins (GIP) which interacts with the receptor in an orchestrated spatio-temporal fashion. Therefore, there is a high interest in understanding the dynamics of the receptor-receptor and receptor-protein interactions in space and time, and specially, their integration in GPCR heterocomplexes of the Central Nervous System (CNS). Also, pathological protein-protein interactions in homocomplexes and heterocomplexes of Aβ, Tau, and α-Syn are at the heart of the development of conformational protein disorders. Along this work, experimental evidences are given to illustrate that GPCR interactions have relevance for neurological and mental diseases and are targets for drug development. GPCR containing heteromers and higher order heteromers through allosteric receptor- receptor interactions have become major integrative centers at the molecular level and their receptor protomers act as moonlighting proteins. They have become exciting new targets for neurotherapeutics in e.g. Parkinson’s disease, schizophrenia, drug addiction, anxiety and depression opening up a new field in neuropsychopharmacology.
Along this work, the allosteric receptor-receptor interactions over the interfaces in A2AR-D2R, D2R-NTS1R, D2R-Sigma1R and 5-HT1A-FGFR1 heteroreceptor complexes will be explored and their biochemical, pharmacological and functional integrative implications in the CNS described. Methodologies for studies on receptor- receptor interactions are discussed including the use of FRET and BRET-based techniques in the analysis of G protein coupled receptor (GPCR) dimerization in living cells. In situ proximity ligation assay is performed to establish the existence of native heteroreceptor complexes in the CNS
Political Risk and Regulatory Risk: Issues in Emerging Markets Infrastructure Concessions
Political and regulatory risks, cause damage to countries and investors because of investment diminishing. When investments take place, those could increase services prices. Present work has as its objectives to characterize theoretically the problem, to study existent measures to face it, to know the available instruments to deal with it, and to draw some general conclusions on political and regulatory risks, and some specific conclusions referred to infrastructure concessions. The article is limited to the study of opportunistic behavior or governments.regulatory risks; Issues in Emerging Markets; Infrastructure Concessions
On annuities: an overview of the issues
Longevity is increasing in the whole world, and savings for retirement are growing quickly. There is a potential demand for certainty in the income streams for pensioners since old-fashioned pay-as-you-go systems became financially stressed. A financial product, the annuity contract, offers longevity insurance but its market is not well developed, even in the small set of countries where it exists. The instrument, its market and its problems are analyzed, and a discussion is made in order to ameliorate the understanding of an apparent paradox: why an interesting instrument is not more demanded and supplied.annuity; insurance; pension
Cu,Zn superoxide dismutase genes in Tribolium castaneum: evolution, molecular characterisation and gene expression during immune priming.
The production of reactive oxygen species (ROS) is a normal consequence of the aerobic cell metabolism. Despite their high and potentially detrimental reactivity with various biomolecules, the endogenous production of ROS is a vital part of physiological, immunological, and molecular processes that contribute to fitness. The role of ROS in host\u2013parasite interactions is frequently defined by their contribution to innate immunity as effectors, promoting parasite death during infections. In vertebrates, ROS and antioxidant system enzymes, such as superoxide dismutase (SOD) are also involved in acquired immune memory, where they are responsible for T-cell signalling, activation, proliferation, and viability. Based on recent findings, ROS are now also assumed to play a role in immune priming, i.e., a form of memory in invertebrates. In this study, the potential involvement of Cu,Zn SODs in immunity of the red flour beetle Tribolium castaneum is described for the first time, applying an approach that combines an in\ua0silico gene characterisation with an in\ua0vivo immune priming experiment using the Gram-positive entomopathogen Bacillus thuringiensis. We identified an unusually high number of three different transcripts for extracellular SOD and found that priming leads to a fine-tuned modulation of SOD expression, highlighting the potential of physiological co-adaptations for immune phenotypes
- …
