118 research outputs found
Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an Endangered Marsupial Species with Limited Genetic Diversity
Tasmanian devils (Sarcophilus harrisii) are on the verge of extinction due to a transmissible cancer, devil facial tumour disease (DFTD). This tumour is an allograft that is transmitted between individuals without immune recognition of the tumour cells. The mechanism to explain this lack of immune recognition and acceptance is not well understood. It has been hypothesized that lack of genetic diversity at the Major Histocompatibility Complex (MHC) allowed the tumour cells to grow in genetically similar hosts without evoking an immune response to alloantigens. We conducted mixed lymphocyte reactions and skin grafts to measure functional MHC diversity in the Tasmanian devil population. The limited MHC diversity was sufficient to produce measurable mixed lymphocyte reactions. There was a wide range of responses, from low or no reaction to relatively strong responses. The highest responses occurred when lymphocytes from devils from the east of Tasmania were mixed with lymphocytes from devils from the west of Tasmania. All of the five successful skin allografts were rejected within 14 days after surgery, even though little or no MHC I and II mismatches were found. Extensive T-cell infiltration characterised the immune rejection. We conclude that Tasmanian devils are capable of allogeneic rejection. Consequently, a lack of functional allorecognition mechanisms in the devil population does not explain the transmission of a contagious cancer
FUTURE PERSPECTIVES IN MELANOMA RESEARCH. Meeting report from the “Melanoma Research: a bridge from Naples to the World. Napoli, December 5th–6 th2011”
After more than 30 years, landmark progress has been made in the treatment of cancer, and melanoma in particular, with the success of new molecules such as ipilimumab, vemurafenib and active specific immunization
The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell
Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche
Neoadjuvant treatment of pancreatic adenocarcinoma: a systematic review and meta-analysis of 5520 patients
Optimal Technical Management of Stump Closure Following Distal Pancreatectomy: A Retrospective Review of 215 Cases
Future perspectives in melanoma research: meeting report from the "Melanoma Bridge", Napoli, December 5th-8th 2013
Cerebrovascular responsiveness to hypercapnia in Alzheimer's dementia and vascular dementia of the Binswanger type.
Intestinal microvascular adaptation during maturation of spontaneously hypertensive rats.
- …
