6,735 research outputs found
Measurement of the linear viscoelastic behavior of antimisting kerosene
Measurements of dynamic viscoelastic properties in very small oscillating shear deformations was made on solutions of a jet fuel, Jet A, containing an antimisting polymeric additive, FM-9. A few measurements were also made on solutions of FM-9 in a mixed solvent of mineral oil, Tetralin, and 0-terphenyl. Two samples of FM-9 had approximate number-average molecular weights of 12,000,000 and 8,100,000 as deduced from analysis of the measurements. The ranges of variables were 2.42 to 4.03 g/1 in concentration (0.3 to 0.5% by weight), 1 to 35 in temperature, 1.3 to 9.4 cp in solvent viscosity, and 103 to 6100 Hz in frequency. Measurements in the Jet A solvent were made both with and without a modifying carrier. The results were compared with the Zimm theory and the viscoelastic behavior was found to resemble rather closely that of ordinary non-polar polymers in theta solvents. The relation of the results to the antithixotropic behavior of such solutions a high shear rates is discussed in terms of intramolecular and intermolecular interactions
On the mechanism of the highly viscous flow
The asymmetry model for the highly viscous flow postulates thermally
activated jumps from a practically undistorted ground state to strongly
distorted, but stable structures, with a pronounced Eshelby backstress from the
distorted surroundings. The viscosity is ascribed to those stable distorted
structures which do not jump back, but relax by the relaxation of the
surrounding viscoelastic matrix. It is shown that this mechanism implies a
description in terms of the shear compliance, with a viscosity which can be
calculated from the cutoff of the retardation spectrum. Consistency requires
that this cutoff lies close to the Maxwell time. The improved asymmetry model
compares well with experiment.Comment: 8 pages, 3 figures, 49 references; revised version accepted in
Journal of Chemical Physic
DNA double helices for single molecule electronics
The combination of self-assembly and electronic properties as well as its
true nanoscale dimensions make DNA a promising candidate for a building block
of single molecule electronics. We argue that the intrinsic double helix
conformation of the DNA strands provides a possibility to drive the electric
current through the DNA by the perpendicular electric (gating) field. The
transistor effect in the poly(G)-poly(C) synthetic DNA is demonstrated within a
simple model approach. We put forward experimental setups to observe the
predicted effect and discuss possible device applications of DNA. In
particular, we propose a design of the single molecule analog of the Esaki
diode.Comment: 4 pages, 4 figur
Spin-dependent pump current and noise in an adiabatic quantum pump based on domain walls in a magnetic nanowire
We study the pump current and noise properties in an adiabatically modulated
magnetic nanowire with double domain walls (DW). The modulation is brought
about by applying a slowly oscillating magnetic and electric fields with a
controllable phase difference. The pumping mechanism resembles the case of the
quantum dot pump with two-oscillating gates. The pump current, shot noise, and
heat flow show peaks when the Fermi energy matches with the spin-split resonant
levels localized between the DWs. The peak height of the pump current is an
indicator for the lifetime of the spin-split quasistationary states between the
DWs. For sharp DWs, the energy absorption from the oscillating fields results
in side-band formations observable in the pump current. The pump noise carries
information on the correlation properties between the nonequilibrium electrons
and the quasi-holes created by the oscillating scatterer. The ratio between the
pump shot noise and the heat flow serves as an indicator for quasi-particle
correlation.Comment: 18 pages, 5 figure
A profile of the Monterey squid fleet in 1992
There were approximately 20 vessels active in the 1992 Monterey Bay squid fishery. The size of the fleet has not changed since the early 1970's when 15 to 20 vessels participated in the fishery.
Since 1977, eleven steel hulled vessels have been added
to the fleet, replacing smaller wooden hulled vessels that were in use during the 1960's. The hold capacity of the new fleet remains about 800 tons, because the new larger vessels replaced small vessels that used lighters (20 - 25 ton capacity non-motorized barges).
Purse seines were legalized in 1989 and have replaced
lamparas which were in use during the 1960'S and 1970's.
Seines used in the squid fishery are small and shallow,
ranging from 120 to 200 fm in length with most less
than 25 fm deep.
Crew size has been reduced nearly 50% by the addition of net reels, power blocks, submersible fish pumps, and vacuum pumps used for unloading at dockside.
In the 1970's flasher type fathometers were used by the fleet and few vessels had navigational aids. Today most
of the fleet have sonar, radar, and loran C. Three vessels carry global positioning systems.
In 1988 squid attracting lights were legalized and the
entire fleet used lights during the 1992 season. (21pp.
On Davenport and Heilbronn-Type of Functions
A correction is brought to the opinion expressed in a previous note published
in this journal that the off critical line points indicated by some authors as
being non trivial zeros of the Davenport and Heilbronn function are affected of
approximation errors and illustrations are presented which enforce the
conclusion that they are true zeros. It is shown also that linear combinations
of L-functions satisfying the same Riemann-type of functional equation do not
offer counterexamples to RH, contrary to a largely accepted position.Comment: 8 pages, 2 figure
Anomalous Josephson Current in Junctions with Spin-Polarizing Quantum Point Contacts
We consider a ballistic Josephson junction with a quantum point contact in a
two-dimensional electron gas with Rashba spin-orbit coupling. The point contact
acts as a spin filter when embedded in a circuit with normal electrodes. We
show that with an in-plane external magnetic field an anomalous supercurrent
appears even for zero phase difference between the superconducting electrodes.
In addition, the external field induces large critical current asymmetries
between the two flow directions, leading to supercurrent rectifying effects.Comment: 4 pages, 4 figures, to appear in PR
Noise properties of two single electron transistors coupled by a nanomechanical resonator
We analyze the noise properties of two single electron transistors (SETs)
coupled via a shared voltage gate consisting of a nanomechanical resonator.
Working in the regime where the resonator can be treated as a classical system,
we find that the SETs act on the resonator like two independent heat baths. The
coupling to the resonator generates positive correlations in the currents
flowing through each of the SETs as well as between the two currents. In the
regime where the dynamics of the resonator is dominated by the back-action of
the SETs, these positive correlations can lead to parametrically large
enhancements of the low frequency current noise. These noise properties can be
understood in terms of the effects on the SET currents of fluctuations in the
state of a resonator in thermal equilibrium which persist for times of order
the resonator damping time.Comment: Accepted for publication in Phys. Rev.
Magnetoconductance of the quantum spin Hall state
We study numerically the edge magnetoconductance of a quantum spin Hall
insulator in the presence of quenched nonmagnetic disorder. For a finite
magnetic field B and disorder strength W on the order of the bulk gap E_g, the
conductance deviates from its quantized value in a manner which appears to be
linear in |B| at small B. The observed behavior is in qualitative agreement
with the cusp-like features observed in recent magnetotransport measurements on
HgTe quantum wells. We propose a dimensional crossover scenario as a function
of W, in which for weak disorder W < E_g the edge liquid is analogous to a
disordered spinless 1D quantum wire, while for strong disorder W > E_g, the
disorder causes frequent virtual transitions to the 2D bulk, where the
originally 1D edge electrons can undergo 2D diffusive motion and 2D
antilocalization.Comment: 5 pages, 3 figure
Scattering of Dirac electrons by circular mass barriers: valley filter and resonant scattering
The scattering of two-dimensional (2D) massless Dirac electrons is
investigated in the presence of a random array of circular mass barriers. The
inverse momentum relaxation time and the Hall factor are calculated and used to
obtain parallel and perpendicular resistivity components within linear
transport theory. We found a non zero perpendicular resistivity component which
has opposite sign for electrons in the different K and K' valleys. This
property can be used for valley filter purposes. The total cross-section for
scattering on penetrable barriers exhibit resonances due to the presence of
quasi-bound states in the barriers that show up as sharp gaps in the
cross-section while for Schr\"{o}dinger electrons they appear as peaks.Comment: 10 pages, 11 figure
- …
