130 research outputs found
Finite element for rotor/stator interactive forces in general engine dynamic simulation. Part 1: Development of bearing damper element
A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases
Research of low cost wind generator rotors
A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems
Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking
Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved
Dynamic analysis of space-related linear and non-linear structures
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized
Parametric studies of advanced turboprops
The effects of geometric variables (sweep and twist) on the structural performance of advanced turboprops are investigated. The investigation is limited to aerodynamically efficient turboprops using an acceptable design configuration as a baseline. The baseline configuration is modified using a seven by seven array of independently varying sweep and twist parameters while maintaining acceptable aerodynamic efficiency. The turboprop structural performance is evaluated in terms of critical speeds, tip displacements, and vibration frequencies where geometric nonlinearities are included. The results obtained are presented in such a manner as to highlight the effects of sweep and twist on the structural performance of aerodynamically efficient turboprop configurations
Exponents of the localization lengths in the bipartite Anderson model with off-diagonal disorder
We investigate the scaling properties of the two-dimensional (2D) Anderson
model of localization with purely off-diagonal disorder (random hopping). In
particular, we show that for small energies the infinite-size localization
lengths as computed from transfer-matrix methods together with finite-size
scaling diverge with a power-law behavior. The corresponding exponents seem to
depend on the strength and the type of disorder chosen.Comment: 6 pages, 8 EPS-figures, requires phbauth.cl
Exponents of the localization length in the 2D Anderson model with off-diagonal disorder
We study Anderson localization in two-dimensional systems with purely
off-diagonal disorder. Localization lengths are computed by the transfer-matrix
method and their finite-size and scaling properties are investigated. We find
various numerically challenging differences to the usual problems with diagonal
disorder. In particular, the divergence of the localization lengths close to
the band centre is investigated in detail for bipartite and non-bipartite
lattices as well as different distributions of the off-diagonal disorder.
Divergence exponents for the localization lengths are constructed that appear
to describe the data well down to at least 10^-5. We find only little evidence
for a crossover energy scale below which the power law has been argued to fail.Comment: 10 pages, 9 figures, uses PSS style files (included), submitted to
phys. stat. sol. (b
A MEMS viscometer for unadulterated human blood
The design and theoretical modelling of an oscillating micro-mechanical-viscometer designed for the measurement of whole unadulterated human blood, is described. The proposed device utilises the dependence of the squeeze-film damping ratio on properties of the surrounding fluid to measure fluid viscosity using an oscillating plate structure. The optimum geometrical configuration for the device structure has been investigated and a methodology for defining the optimum configuration of the micro-mechanical sensor identified. This is then applied to calculate the predicted noise equivalent viscosity change . It was found that the device performance is limited by electronic noise within the detection circuitry rather than thermal mechanical noise. An electronic noise limited measurement resolution of , is predicted for measurement over a shear range of , at a measurement bandwidth of . The linearity of response of the micro-mechanical-viscometer is considered and the device is predicted to provide a linear measurement response
NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program
On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree
A robust optimization approach to statistical estimation problems by Apostolos G. Fertis.
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 87-91).There have long been intuitive connections between robustness and regularization in statistical estimation, for example, in lasso and support vector machines. In the first part of the thesis, we formalize these connections using robust optimization. Specifically (a) We show that in classical regression, regularized estimators like lasso can be derived by applying robust optimization to the classical least squares problem. We discover the explicit connection between the size and the structure of the uncertainty set used in the robust estimator, with the coefficient and the kind of norm used in regularization. We compare the out-of-sample performance of the nominal and the robust estimators in computer generated and real data. (b) We prove that the support vector machines estimator is also a robust estimator of some nominal classification estimator (this last fact was also observed independently and simultaneously by Xu, Caramanis, and Mannor [52]). We generalize the support vector machines estimator by considering several sizes and structures for the uncertainty sets, and proving that the respective max-min optimization problems can be expressed as regularization problems. In the second part of the thesis, we turn our attention to constructing robust maximum likelihood estimators. Specifically (a) We define robust estimators for the logistic regression model, taking into consideration uncertainty in the independent variables, in the response variable, and in both. We consider several structures for the uncertainty sets, and prove that, in all cases, they lead to convex optimization problems. We provide efficient algorithms to compute the estimates in all cases.(cont.) We report on the out-of-sample performance of the robust, as well as the nominal estimators in both computer generated and real data sets, and conclude that the robust estimators achieve a higher success rate. (b) We develop a robust maximum likelihood estimator for the multivariate normal distribution by considering uncertainty sets for the data used to produce it. We develop an efficient first order gradient descent method to compute the estimate and compare the efficiency of the robust estimate to the respective nominal one in computer generated data.Ph.D
- …
