923 research outputs found

    Multiple filamentation induced by input-beam ellipticity

    Full text link
    The standard explanation for multiple filamentation (MF) of intense laser beams has been that it is initiated by input beam noise (modulational instability). In this study we provide the first experimental evidence that MF can also be induced by input beam ellipticity. Unlike noise-induced beam breakup, the MF pattern induced by ellipticity is reproducible shot to shot. Moreover, our experiments show that ellipticity can dominate the effect of noise, thus providing the first experimental methodology for controlling the MF pattern of noisy beams. The results are explained using a theoretical model and simulations

    Simulations of the Nonlinear Helmholtz Equation: Arrest of Beam Collapse, Nonparaxial Solitons, and Counter-Propagating Beams

    Full text link
    We solve the (2+1)D nonlinear Helmholtz equation (NLH) for input beams that collapse in the simpler NLS model. Thereby, we provide the first ever numerical evidence that nonparaxiality and backscattering can arrest the collapse. We also solve the (1+1)D NLH and show that solitons with radius of only half the wavelength can propagate over forty diffraction lengths with no distortions. In both cases we calculate the backscattered field, which has not been done previously. Finally, we compute the dynamics of counter-propagating solitons using the NLH model, which is more comprehensive than the previously used coupled NLS model.Comment: 6 pages, 6 figures, Lette

    Bass-SIR model for diffusion of new products

    Full text link
    We consider the diffusion of new products in social networks, where consumers who adopt the product can later "recover" and stop influencing others to adopt the product. We show that the diffusion is not described by the SIR model, but rather by a novel model, the Bass-SIR model, which combines the Bass model for diffusion of new products with the SIR model for epidemics. The phase transition of consumers from non-adopters to adopters is described by a non-standard Kolmogorov-Johnson-Mehl-Avrami model, in which clusters growth is limited by adopters' recovery. Therefore, diffusion in the Bass-SIR model only depends on the local structure of the social network, but not on the average distance between consumers. Consequently, unlike the SIR model, a small-worlds structure has a negligible effect on the diffusion. Surprisingly, diffusion on scale-free networks is nearly identical to that on Cartesian ones.Comment: 5 pages, 5 figure

    Singular standing-ring solutions of nonlinear partial differential equations

    Full text link
    We present a general framework for constructing singular solutions of nonlinear evolution equations that become singular on a d-dimensional sphere, where d>1. The asymptotic profile and blowup rate of these solutions are the same as those of solutions of the corresponding one-dimensional equation that become singular at a point. We provide a detailed numerical investigation of these new singular solutions for the following equations: The nonlinear Schrodinger equation, the biharmonic nonlinear Schrodinger equation, the nonlinear heat equation and the nonlinear biharmonic heat equation.Comment: 34 pages, 21 figure
    corecore