37,935 research outputs found
The Underlying Event in Hard Scattering Processes
We study the behavior of the "underlying event" in hard scattering
proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo
models. The "underlying event" is everything except the two outgoing hard
scattered "jets" and receives contributions from the "beam-beam remnants" plus
initial and final-state radiation. The data indicate that neither ISAJET or
HERWIG produce enough charged particles (with PT > 0.5 GeV/c) from the
"beam-beam remnant" component and that ISAJET produces too many charged
particles from initial-state radiation. PYTHIA which uses multiple parton
scattering to enhance the "underlying event" does the best job describing the
data.Comment: RevTex4, 18 pages, 29 figures, contribution to Snowmass 200
A Study of the LEP and SLD Measurements of
A systematic study is made of the data dependence of the parameter
, that, since 1995, has shown a deviation from the Standard Model
prediction of between 2.4 and 3.1 standard deviations. Issues addressed
include: the effect of particular measurements, values found by individual
experiments, LEP/SLD comparison, and the treatment of systematic errors. The
effect, currently at the 2.4 level, is found to vary in the range from
1.7 to 2.9 by excluding marginal or particularly sensitive
data. Since essentially the full LEP and SLD Z decay data sets are now analysed
the meaning of the deviation, (new physics, or marginal statistical
fluctuation) is unlikely to be given by the present generation of colliders.Comment: 15 pages 7 figures 7 table
Using Collider Event Topology in the Search for the Six-Jet Decay of Top Quark-Antiquark Pairs
We investigate the use of the event topology as a tool in the search for the
six-jet decay of top-pair production in proton-antiproton collisions at 1.8
TeV. Modified Fox-Wolfram "shape" variables, H_i, are employed to help
distinguish the top-pair signal from the ordinary QCD multi-jet background. The
H's can be constructed directly from the calorimeter cells or from jets. Events
are required to lie in a region of H-space defined by L_i < H_i < R_i for
i=1,...,,6, where the left, L_i, and right, R_i, cuts are determined by a
genetic algorithm (GA) procedure to maximize the signal over the square root of
the background. We are able to reduce the background over the signal to less
than a factor of 100 using purely topological methods without using jet
multiplicity cuts and without the aid of b-quark tagging.Comment: LaTeX, 19 pages, 13 figure
Space shuttle: Longitudinal and lateral directional stability characteristics of the MDAC high cross range delta wing orbiter
Low speed wind tunnel tests on longitudinal and lateral stability of high cross range delta wing space shuttle
Death of Stellar Baryonic Dark Matter
The nature of the dark matter in the haloes of galaxies is one of the
outstanding questions in astrophysics. All stellar candidates, until recently
thought to be likely baryonic contributions to the Halo of our Galaxy, are
shown to be ruled out. Faint stars and brown dwarfs are found to constitute
only a few percent of the mass of the Galaxy. Stellar remnants, including white
dwarfs and neutron stars, are shown to be very constrained as well. High energy
gamma-rays observed in HEGRA data place the strongest constraints, , where is the Hubble constant in units of 100 km
s Mpc. Hence one is left with several unanswered questions: 1)
What are MACHOs seen in microlensing surveys? 2) What is the dark matter in our
Galaxy? Indeed a nonbaryonic component in the Halo seems to be required.Comment: 6 pages ps fil
The automated multi-stage substructuring system for NASTRAN
The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input
Compton Polarimetry at a TEV Collider
An electron beam polarization of 80% or greater will be a key feature of a 1
TeV Linear Collider. Accurate measurements of the beam polarization will
therefore be needed. We discuss design considerations and capabilities for a
Compton-scattering polarimeter located in the extraction line from the
Interaction Point. Polarization measurements with 1% accuracy taken parasitic
to collision data look feasible, but detailed simulations are needed.
Polarimeter design issues are similar for both electron-positron and
electron-electron collider modes, though beam disruption creates more
difficulties for the electron-electron mode.Comment: 7 pages, 5 figure
The nature of turbulence in OMC1 at the star forming scale: observations and simulations
Aim: To study turbulence in the Orion Molecular Cloud (OMC1) by comparing
observed and simulated characteristics of the gas motions.
Method: Using a dataset of vibrationally excited H2 emission in OMC1
containing radial velocity and brightness which covers scales from 70AU to
30000AU, we present the transversal structure functions and the scaling of the
structure functions with their order. These are compared with the predictions
of two-dimensional projections of simulations of supersonic hydrodynamic
turbulence.
Results: The structure functions of OMC1 are not well represented by power
laws, but show clear deviations below 2000AU. However, using the technique of
extended self-similarity, power laws are recovered at scales down to 160AU. The
scaling of the higher order structure functions with order deviates from the
standard scaling for supersonic turbulence. This is explained as a selection
effect of preferentially observing the shocked part of the gas and the scaling
can be reproduced using line-of-sight integrated velocity data from subsets of
supersonic turbulence simulations. These subsets select regions of strong flow
convergence and high density associated with shock structure. Deviations of the
structure functions in OMC1 from power laws cannot however be reproduced in
simulations and remains an outstanding issue.Comment: 12 pages, 8 figures, accepted A&A. Revised in response to referee.
For higher resolution, see http://www.astro.phys.au.dk/~maikeng/sim_paper
Bioengineering Lantibiotics for Therapeutic Success
peer-reviewedSeveral examples of highly modified antimicrobial peptides have been described.
While many such peptides are non-ribosomally synthesized, ribosomally synthesized
equivalents are being discovered with increased frequency. Of the latter group, the
lantibiotics continue to attract most attention. In the present review, we discuss the
implementation of in vivo and in vitro engineering systems to alter, and even enhance,
the antimicrobial activity, antibacterial spectrum and physico-chemical properties,
including heat stability, solubility, diffusion and protease resistance, of these compounds.
Additionally, we discuss the potential applications of these lantibiotics for use as
therapeutics.DF,CH,PC,RR are supported by the Irish Government under the National Development Plan, through a Science Foundation Ireland (SFI) Technology and Innovation Development Award
(TIDA14/TIDA/2286) to DF, a SFI Investigator awards to CH and RR (10/IN.1/B3027),SFI-PIfunding(11/PI/1137) to PDC and the Alimentary Pharmabiotic Centre under Grant Number SFI/12/RC/2273
- …
