147 research outputs found
Fragmentation Function and Hadronic Production of the Heavy Supersymmetric Hadrons
The light top-squark \sto may be the lightest squark and its lifetime may
be `long enough' in a kind of SUSY models which have not been ruled out yet
experimentally, so colorless `supersymmetric hadrons (superhadrons)' (\sto
\bar{q}) ( is a quark except -quark) may be formed as long as the light
top-squark \sto can be produced. Fragmentation function of \sto to heavy
`supersymmetric hadrons (superhadrons)' (\sto \bar{Q}) ( or
) and the hadronic production of the superhadrons are investigated
quantitatively. The fragmentation function is calculated precisely. Due to the
difference in spin of the SUSY component, the asymptotic behavior of the
fragmentation function is different from those of the existent ones. The
fragmentation function is also applied to compute the production of heavy
superhadrons at hadronic colliders Tevatron and LHC under the so-called
fragmentation approach. The resultant cross-section for the heavy superhadrons
is too small to observe at Tevatron, but great enough at LHC, even when all the
relevant parameters in the SUSY models are taken within the favored region for
the heavy superhadrons. The production of `light superhadrons' (\sto \bar{q})
() is also roughly estimated. It is pointed out that the production
cross-sections of the light superhadrons (\sto \bar{q}) may be much greater
than those of the heavy superhadrons, so that even at Tevatron the light
superhadrons may be produced in great quantities.Comment: 20 pages, 9 figure
Coronaviruses and Australian bats: a review in the midst of a pandemic
Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health
Emerging Viruses: Coming in on a Wrinkled Wing and a Prayer
The role that bats have played in the emergence of several new infectious diseases has been under review. Bats have been identified as the reservoir hosts of newly emergent viruses such as Nipah virus, Hendra virus, and severe acute respiratory syndrome–like coronaviruses. This article expands on recent findings about bats and viruses and their relevance to human infections. It briefly reviews the history of chiropteran viruses and discusses their emergence in the context of geography, phylogeny, and ecology. The public health and trade impacts of several outbreaks are also discussed. Finally, we attempt to predict where, when, and why we may see the emergence of new chiropteran viruses
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering
Spin asymmetries of semi-inclusive cross sections for the production of
positively and negatively charged hadrons have been measured in deep-inelastic
scattering of polarized positrons on polarized hydrogen and 3He targets, in the
kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark
distributions are extracted as a function of x for up $(u+u_bar) and down
(d+d_bar) flavors. The up quark polarization is positive and the down quark
polarization is negative in the measured range. The polarization of the sea is
compatible with zero. The first moments of the polarized quark distributions
are presented. The isospin non-singlet combination Delta_q_3 is consistent with
the prediction based on the Bjorken sum rule. The moments of the polarized
quark distributions are compared to predictions based on SU(3)_f flavor
symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version
contains tables of asymmetries and correlation matri
La ricerca in Psicologia Clinica Perinatale : fattori di rischio e protezione per la tutela della salute mentale
Nucleosomes in gene regulation: theoretical approaches
This work reviews current theoretical approaches of biophysics and
bioinformatics for the description of nucleosome arrangements in chromatin and
transcription factor binding to nucleosomal organized DNA. The role of
nucleosomes in gene regulation is discussed from molecular-mechanistic and
biological point of view. In addition to classical problems of this field,
actual questions of epigenetic regulation are discussed. The authors selected
for discussion what seem to be the most interesting concepts and hypotheses.
Mathematical approaches are described in a simplified language to attract
attention to the most important directions of this field
Transcriptome‐wide association study reveals candidate causal genes for lung cancer
We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of this study has been to integrate the complete GWAS results with a large‐scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n=1,038) to identify candidate causal genes for lung cancer. We performed transcriptome‐wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma, small cell lung cancer) and smoking subgroups (never‐ and ever‐smokers). We performed replication analysis using lung data from the Genotype‐Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever‐smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (PTWAS=1.09E‐99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (PTWAS=3.72E‐6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3‐adenocarcinoma on 9p13.3 was replicated using GTEx (PTWAS=6.55E‐5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influence lung cancer risk
Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance
Published in Handbook of financial time series, 2008, https://doi.org/10.1007/978-3-540-71297-8_22</p
- …
