2,054 research outputs found
Sex-biased parental care and sexual size dimorphism in a provisioning arthropod
The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests.
To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest.
We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight.
Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species
Brain activation during face perception: evidence of a developmental change.
Behavioral studies suggest that children under age 10 process faces using a piecemeal strategy based on individual distinctive facial features, whereas older children use a configural strategy based on the spatial relations among the face's features. The purpose of this study was to determine whether activation of the fusiform gyrus, which is involved in face processing in adults, is greater during face processing in older children (12-14 years) than in younger children (8-10 years). Functional MRI scans were obtained while children viewed faces and houses. A developmental change was observed: Older children, but not younger children, showed significantly more activation in bilateral fusiform gyri for faces than for houses. Activation in the fusiform gyrus correlated significantly with age and with a behavioral measure of configural face processing. Regions believed to be involved in processing basic facial features were activated in both younger and older children. Some evidence was also observed for greater activation for houses versus faces for the older children than for the younger children, suggesting that processing of these two stimulus types becomes more differentiated as children age. The current results provide biological insight into changes in visual processing of faces that occur with normal development
Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder
Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment
We report initial results of the first flight of the Antarctic Impulsive
Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which
searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3
EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan
effect in neutrino-induced electromagnetic showers within the Antarctic ice
sheets. We report here on our initial analysis, which was performed as a blind
search of the data. No neutrino candidates are seen, with no detected physics
background. We set model-independent limits based on this result. Upper limits
derived from our analysis rule out the highest cosmogenic neutrino models. In a
background horizontal-polarization channel, we also detect six events
consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table
Very Cold Gas and Dark Matter
We have recently proposed a new candidate for baryonic dark matter: very cold
molecular gas, in near-isothermal equilibrium with the cosmic background
radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed
in a fractal structure, resembling the hierarchical structure of the detected
interstellar medium.
We present some perspectives of detecting this very cold gas, either directly
or indirectly. The H molecule has an "ultrafine" structure, due to the
interaction between the rotation-induced magnetic moment and the nuclear spins.
But the lines fall in the km domain, and are very weak. The best opportunity
might be the UV absorption of H in front of quasars. The unexpected cold
dust component, revealed by the COBE/FIRAS submillimetric results, could also
be due to this very cold H gas, through collision-induced radiation, or
solid H grains or snowflakes. The -ray distribution, much more
radially extended than the supernovae at the origin of cosmic rays
acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded
compressed tar file. To be published in the proceeedings of the
"Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block
(ed.), (Kluwer Dordrecht
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations
The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback
The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle-regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident
Aerobic Exercise during Pregnancy and Presence of Fetal-Maternal Heart Rate Synchronization
It has been shown that short-term direct interaction between maternal and fetal heart rates may take place and that this interaction is affected by the rate of maternal respiration. The aim of this study was to determine the effect of maternal aerobic exercise during pregnancy on the occurrence of fetal-maternal heart rate synchronization.In 40 pregnant women at the 36th week of gestation, 21 of whom exercised regularly, we acquired 18 min. RR interval time series obtained simultaneously in the mothers and their fetuses from magnetocardiographic recordings. The time series of the two groups were examined with respect to their heart rate variability, the maternal respiratory rate and the presence of synchronization epochs as determined on the basis of synchrograms. Surrogate data were used to assess whether the occurrence of synchronization was due to chance.In the original data, we found synchronization occurred less often in pregnancies in which the mothers had exercised regularly. These subjects also displayed higher combined fetal-maternal heart rate variability and lower maternal respiratory rates. Analysis of the surrogate data showed shorter epochs of synchronization and a lack of the phase coordination found between maternal and fetal beat timing in the original data.The results suggest that fetal-maternal heart rate coupling is present but generally weak. Maternal exercise has a damping effect on its occurrence, most likely due to an increase in beat-to-beat differences, higher vagal tone and slower breathing rates
Maternal feeding practices and fussy eating in toddlerhood: A discordant twin analysis
Background: Parental feeding practices are thought to play a causal role in shaping a child's fussiness; however, a child-responsive model suggests that feeding practices may develop in response to a child's emerging appetitive characteristics. We used a novel twin study design to test the hypothesis that mothers vary their feeding practices for twin children who differ in their 'food fussiness', in support of a child-responsive model. Methods: Participants were mothers and their 16 month old twin children (n=2026) from Gemini, a British twin birth cohort of children born in 2007. Standardized psychometric measures of maternal 'pressure to eat', 'restriction' and 'instrumental feeding', as well as child 'food fussiness', were completed by mothers. Within-family analyses examined if twin-pair differences in 'food fussiness' were associated with differences in feeding practices using linear regression models. In a subset of twins (n=247 pairs) who were the most discordant (highest quartile) on 'food fussiness' (difference score≥.50), Paired Samples T-test were used to explore the magnitude of differences in feeding practices between twins. Between-family analyses used Complex Samples General Linear Models to examine associations between feeding practices and 'food fussiness'. Results: Within-pair differences in 'food fussiness' were associated with differential 'pressure to eat' and 'instrumental feeding' (ps<.001), but not with 'restriction'. In the subset of twins most discordant on 'food fussiness', mothers used more pressure (p<.001) and food rewards (p<.05) with the fussier twin. Between-family analyses indicated that 'pressure to eat' and 'instrumental feeding' were positively associated with 'food fussiness', while 'restriction' was negatively associated with 'food fussiness' (ps<.001). Conclusions: Mothers appear to subtly adjust their feeding practices according to their perceptions of their toddler's emerging fussy eating behavior. Specifically, the fussier toddler is pressured more than their less fussy co-twin, and is more likely to be offered food rewards. Guiding parents on how to respond to fussy eating may be an important aspect of promoting feeding practices that encourage food acceptance
Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)
Background
Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings
Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ~220 Hz, but the sound waveform indicates a higher frequency resonance ~5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ~1000. Conclusions and Significance
Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production
- …
