131 research outputs found
Twenty Years of Timing SS433
We present observations of the optical ``moving lines'' in spectra of the
Galactic relativistic jet source SS433 spread over a twenty year baseline from
1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession
of the jet axis in SS433, and we present a new determination of the precession
parameters based on these data. We investigate the amplitude and nature of
time- and phase-dependent deviations from the kinematic model for the jet
precession, including an upper limit on any precessional period derivative of
. We also dicuss the implications of these results
for the origins of the relativistic jets in SS433.Comment: 21 pages, including 9 figures. To appear in the Astrophysical Journa
Sunday Music Series Presents Guilherme Andreas
https://digitalcommons.andrews.edu/campus-news-images/1549/thumbnail.jp
Isn\u27t it Romantic? Sacrificing Agency for Romance in \u3ci\u3eThe Chronicles of Prydain\u3c/i\u3e
Addresses the vexed question of Princess Eilonwy’s gesture of giving up magic and immortality to be the wife of Taran and queen of Prydain. Was it a forced choice and a sacrifice of the capable and strong-willed girl’s agency and power, or does it proceed logically from her depiction throughout the series
Recommended from our members
Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition.
Black carbon (BC) absorbs solar radiation, leading to a strong but uncertain warming effect on climate. A key challenge in modeling and quantifying BC's radiative effect on climate is predicting enhancements in light absorption that result from internal mixing between BC and other aerosol components. Modeling and laboratory studies show that BC, when mixed with other aerosol components, absorbs more strongly than pure, uncoated BC; however, some ambient observations suggest more variable and weaker absorption enhancement. We show that the lower-than-expected enhancements in ambient measurements result from a combination of two factors. First, the often used spherical, concentric core-shell approximation generally overestimates the absorption by BC. Second, and more importantly, inadequate consideration of heterogeneity in particle-to-particle composition engenders substantial overestimation in absorption by the total particle population, with greater heterogeneity associated with larger model-measurement differences. We show that accounting for these two effects-variability in per-particle composition and deviations from the core-shell approximation-reconciles absorption enhancement predictions with laboratory and field observations and resolves the apparent discrepancy. Furthermore, our consistent model framework provides a path forward for improving predictions of BC's radiative effect on climate
- …
