142 research outputs found
Use of a Single Hybrid Imaging Agent for Integration of Target Validation with In Vivo and Ex Vivo Imaging of Mouse Tumor Lesions Resembling Human DCIS
Screening of biomarker expression levels in tumor biopsy samples not only provides an assessment of prognostic and predictive factors, but may also be used for selection of biomarker-specific imaging strategies. To assess the feasibility of using a biopsy specimen for a personalized selection of an imaging agent, the chemokine receptor 4 (CXCR4) was used as a reference biomarker. Methods: A hybrid CXCR4 targeting peptide (MSAP-Ac-TZ14011) containing a fluorescent dye and a chelate for radioactive labeling was used to directly compare initial flow cytometry–based target validation in fresh tumor tissue to single photon emission computed tomography (SPECT) imaging and and fluorescence imaging. Results: Flow cytometric analysis of mouse tumor derived cell suspensions enabled discrimination between 4T1 control tumor lesions (with low levels of CXCR4 expression) and CXCR4 positive early, intermediate and late stage MIN-O lesions based on their CXCR4 expression levels; CXCR4, CXCR4 and CXCR4 cell populations could be accurately discriminated. Mean fluorescent intensity ratios between expression in MIN-O and 4T1 tissue found with flow cytometry were comparable to ratios obtained with in vivo SPECT/CT and fluorescence imaging, ex vivo fluorescence evaluation and standard immunohistochemistry. Conclusion: The hybrid nature of a targeting imaging agent like MSAP-Ac-TZ14011 enables integration of target selection, in vivo imaging and ex vivo validation using a single agent. The use of biopsy tissue for biomarker screening can readily be expanded to other targeting hybrid imaging agents and can possibly help increase the clinical applicability of tumor-specific imaging approaches
Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology
Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions
Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model
First-in-human validation of a DROP-IN β-probe for robotic radioguided surgery: defining optimal signal-to-background discrimination algorithm
In radioguided surgery (RGS), radiopharmaceuticals are used to generate preoperative roadmaps (e.g., PET/CT) and to facilitate intraoperative tracing of tracer avid lesions. Within RGS, there is a push toward the use of receptor-targeted radiopharmaceuticals, a trend that also has to align with the surgical move toward minimal invasive robotic surgery. Building on our initial ex vivo evaluation, this study investigates the clinical translation of a DROP-IN β probe in robotic PSMA-guided prostate cancer surgery. Methods: A clinical-grade DROP-IN β probe was developed to support the detection of PET radioisotopes (e.g., 68 Ga). The prototype was evaluated in 7 primary prostate cancer patients, having at least 1 lymph node metastases visible on PSMA-PET. Patients were scheduled for radical prostatectomy combined with extended pelvic lymph node dissection. At the beginning of surgery, patients were injected with 1.1 MBq/kg of [68Ga]Ga-PSMA. The β probe was used to trace PSMA-expressing lymph nodes in vivo. To support intraoperative decision-making, a statistical software algorithm was defined and optimized on this dataset to help the surgeon discriminate between probe signals coming from tumors and healthy tissue. Results: The DROP-IN β probe helped provide the surgeon with autonomous and highly maneuverable tracer detection. A total of 66 samples (i.e., lymph node specimens) were analyzed in vivo, of which 31 (47%) were found to be malignant. After optimization of the signal cutoff algorithm, we found a probe detection rate of 78% of the PSMA-PET-positive samples, a sensitivity of 76%, and a specificity of 93%, as compared to pathologic evaluation. Conclusion: This study shows the first-in-human use of a DROP-IN β probe, supporting the integration of β radio guidance and robotic surgery. The achieved competitive sensitivity and specificity help open the world of robotic RGS to a whole new range of radiopharmaceuticals
Precision surgery:the role of intra-operative real-time image guidance - outcomes from a multidisciplinary European consensus conference
Precision surgery:the role of intra-operative real-time image guidance - outcomes from a multidisciplinary European consensus conference
Precision surgery:the role of intra-operative real-time image guidance - outcomes from a multidisciplinary European consensus conference
Developments within the field of image-guided surgery are ever expanding, driven by collective involvement of clinicians, researchers, and industry. While the general conception of the potential of image-guided surgery is to improve surgical outcome, the specific motives and goals that drive can differ between the different expert groups. To establish the current and future role of intra-operative image guidance within the field of image-guided surgery a Delphi consensus survey was conducted during the 2(nd) European Congress on Image-guided surgery. This multidisciplinary survey included questions on the conceptual potential and clinical value of image-guided surgery and was aimed at defining specific areas of research and development in the field in order to stimulate further advances towards precision surgery. Obtained results based on questionnaires filled in by 56 panel experts (clinicians: N=30, researchers: N=20 and industry: N=6) were discussed during a dedicated expert discussion session during the conference. The outcome of this Delphi consensus is indicative of the potential improvements offered by image-guided surgery and of the need for further research in this emerging field, that can be enriched by the identification of reliable molecular targets
- …
