74 research outputs found

    Universality in the Large N_c Dynamics of Flavour: Thermal Vs. Quantum Induced Phase Transitions

    Full text link
    We show how two important types of phase transition in large N_c gauge theory with fundamental flavours can be cast into the same classifying framework as the meson-melting phase transition. These are quantum fluctuation induced transitions in the presence of an external electric field, or a chemical potential for R-charge. The classifying framework involves the study of the local geometry of a special D-brane embedding, which seeds a self-similar spiral structure in the space of embeddings. The properties of this spiral, characterized by a pair of numbers, capture some key universal features of the transition. Computing these numbers for these non-thermal cases, we find that these transitions are in the same universality class as each other, but have different universal features from the thermal case. We present a natural generalization that yields new universality classes that may pertain to other types of transition.Comment: 22 pages, 4 figures, pdfLaTe

    Magnetic Catalysis in AdS4

    Full text link
    We study the formation of fermion condensates in Anti de Sitter space. In particular, we describe a novel version of magnetic catalysis that arises for fermions in asymptotically AdS4 geometries which cap off in the infra-red with a hard wall. We show that the presence of a magnetic field induces a fermion condensate in the bulk that spontaneously breaks CP symmetry. From the perspective of the dual boundary theory, this corresponds to a strongly coupled version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected, extra comments added in appendix. v3: extra comments about fermion modes in a hard wall background. v4: A final factor of

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    D3/D7 Quark-Gluon Plasma with Magnetically Induced Anisotropy

    Get PDF
    We study the effects of the temperature and of a magnetic field in the setup of an intersection of D3/D7 branes, where a large number of D7 branes is smeared in the transverse directions to allow for a perturbative solution in a backreaction parameter. The magnetic field sources an anisotropy in the plasma, and we investigate its physical consequences for the thermodynamics and energy loss of particles probing the system. In particular we comment on the stress-energy tensor of the plasma, the propagation of sound in the directions parallel and orthogonal to the magnetic field, the drag force of a quark moving through the medium and jet quenching.Comment: 29 pages + appendices, 5 figures. v2 Version to appear in JHEP, with minor revisions, references added and typos correcte

    Inverse magnetic catalysis in field theory and gauge-gravity duality

    Full text link
    We investigate the surface of the chiral phase transition in the three-dimensional parameter space of temperature, baryon chemical potential and magnetic field in two different approaches, the field-theoretical Nambu-Jona-Lasinio (NJL) model and the holographic Sakai-Sugimoto model. The latter is a top-down approach to a gravity dual of QCD with an asymptotically large number of colors and becomes, in a certain limit, dual to an NJL-like model. Our main observation is that, at nonzero chemical potential, a magnetic field can restore chiral symmetry, in apparent contrast to the phenomenon of magnetic catalysis. This "inverse magnetic catalysis" occurs in the Sakai-Sugimoto model and, for sufficiently large coupling, in the NJL model and is related to the physics of the lowest Landau level. While in most parts our discussion is a pedagogical review of previously published results, we include new analytical results for the NJL approach and a thorough comparison of inverse magnetic catalysis in the two approaches.Comment: 37 pages, 11 figures, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    Get PDF
    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually perpendicular and parallel.Comment: 50 pages, multiple figures, minor typo fixed, references adde

    Inverse magnetic catalysis in dense holographic matter

    Full text link
    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D; references added; version to appear in JHE

    Holographic chiral magnetic spiral

    Full text link
    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential.Comment: 24 pages, 15 figure

    Semiclassical quantization of Rotating Strings in Pilch-Warner geometry

    Full text link
    Some of the recent important developments in understanding string/ gauge dualities are based on the idea of highly symmetric motion of ``string solitons'' in AdS5×S5AdS_5\times S^5 geometry originally suggested by Gubser, Klebanov and Polyakov. In this paper we study symmetric motion of certain string configurations in so called Pilch-Warner geometry. The two-form field A2A_2 breaks down the supersymmetry to N=1\mathcal{N}=1 but for the string configurations considered in this paper the classical values of the energy and the spin are the same as for string in AdS×S5AdS\times S^5. Although trivial at classical level, the presence of NS-NS antisymmetric field couples the fluctuation modes that indicates changes in the quantum corrections to the energy spectrum. We compare our results with those obtained in the case of pp-wave limit in hep-th/0206045.Comment: 31 pages, no figures, v2 - a few typos correcte

    Magnetic Catalysis: A Review

    Full text link
    We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Version 2: references adde
    corecore